Phase 3:nam动态演示效果,xgraph统计数据出图

nam能够实现,xgraph能够进行简单的结果统计。昨天做了初步统计结果的东西,我觉得有必要重看论文,然后找出论文的评价因素。

重现HHVBF的实验结果:

路由层agent模拟HH-VBF和VBF,应用层agent模拟source和sink,broadcastMac没有冲突控制手段,1 pkt/10s,range:100m,能量消耗:2w(sending),0.75w(recv),8mw(idle),packet size:50 B,pipe radius:100m,beta:75m。每个节点选择一个目的节点并且向这个节点移动,仿真时间:1000s。


三个评价标准:

(1)success rate: the ratio of the number of packets successfully received by the sink to the number of packets generated by the source

(2)energy cost: total energy consumption of all the nodes in the network

(3)energy tax: the average energy consumption for each successfully received packet


可能会对结果产生的影响因素:

(1)节点密度

success rate vs node density:{x:节点数目;y:成功率}成功率是怎么测量?

随着节点密度的增加,成功率增加,奇怪了,vbf_example_6.tcl为啥中间节点都无法接收到数据呢?

SINK 0 : terminates (send 0, recv 8, cum_delay 59.973402)
SINK(0) : send_id = 1, num_recv = 8
SINK 1 : terminates (send 20, recv 0, cum_delay 0.000000)
SINK 2 : terminates (send 0, recv 0, cum_delay 0.000000)

sink(0)节点接收到8个数据包,所有包均来自sink1(node1),也就是说节点都没有经过中间节点了,直接从sink1到节点sink0。

每5秒中发送节点

stop=100,interval=20.0

node=10,sink1:10,sink0:0

node=20,sink1:10,sink0:0

node=50,sink1:10,sink0:1

node=60,sink1:10,sink0:0

node=70,sink1:10,sink0:0

node=80,sink1:10,sink0:2

node=90,sink1:10,sink0:1

node=100,sink1:10,sink0:

recv=5,cum_delay=30.199520,total_energy=113.335344

3,27.907556,119.044393

1,5.528712,98.358784


为什么recv为0,除了dest节点,其通过DataTable能够获得该节点接收节点的来源。衡量成功率主要是看sink recv/source send


energy cost vs node density:{x:节点数目;y:能量消耗},能量消耗怎么算?

energy tax vs node density:{x:节点数据;y:能量tax}

(2)节点移动性

Success rate vs node speed

Energy cost vs node speed

Energy tax vs node speed


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值