💡 本文会带给你
- RAG与LLM的优势
- 如何构建垂域(向量)知识库
- 文本分块的技巧
- 构建一套完整 RAG 系统的步骤
一、RAG的优势
使用 RAG(Retrieval-Augmented Generation)检索增强生成, 核心目的是 结合检索(Retrieval)和生成(Generation)的优势,解决传统大语言模型(LLM)能力不足的问题。
1. 为什么需要 RAG?
传统大语言模型(LLM)存在着知识固化、幻觉、无妨访问企业内部数据等问题,RAG本地部署,可解决这些问题。
(1)解决 LLM 的“知识固化”问题
传统 LLM(如 GPT):依赖训练时的静态知识,无法实时更新。
缺点:如果训练数据中不包含最新信息(如 2024 年的新闻),模型无法正确回答。
RAG:通过检索外部知识库(如本地文档、网页),动态补充最新信息。
示例:
❌ 纯 LLM:问 “2025 年诺贝尔奖得主是谁?” → 可能胡编乱造(幻觉)。
✅ RAG:先检索权威新闻 → 返回真实结果。
(2)减少“幻觉”(Hallucination)
LLM 在缺乏相关知识时容易生成看似合理但错误的答案。
RAG 通过 检索真实文档 提供依据,让生成结果更可信。
示例:
❌ 纯 LLM:“爱因斯坦是如何发明量子计算机的?” → 可能编造故事。
✅ RAG:检索物理学史 → 回答 “爱因斯坦并未直接发明量子计算机”。
(3)支持私有/领域知识
纯 LLM:无法访问企业内部文档、个人笔记等私有数据。
RAG:可直接从本地知识库(如公司 Wiki、PDF 报告)中检索信息。
应用场景:
法律顾问:检索最新法律法规 → 生成合规建议。
医疗诊断:结合医学论文 → 提供参考资料。
(4)低成本 & 可解释性
微调(Fine-tuning):需要大量标注数据和算力,成本高。
RAG:仅需构建检索库,无需重新训练模型,且能提供检索来源(如引用文档)。
对比:
方法 | 成本 | 可解释性 | 更新知识 |
---|---|---|---|
纯 LLM | 低 | 差 | 难 |
微调 | 高 | 中 | 需重新训练 |
RAG | 中 | 高 | 即时 |
2. RAG 的核心优势
(1)动态知识更新
无需重新训练模型,只需更新检索库(如新增 PDF 文件)。
(2)精准答案
生成结果基于检索到的真实文本,而非模型记忆。
(3)模块化设计
可灵活替换组件:
检索器:从 FAISS 切换到 Elasticsearch。
生成模型:从 GPT-4 切换到 Llama3。
(4)适合长尾问题
对冷门、专业问题,RAG 能通过检索补充 LLM 未覆盖的知识。
3. 适用场景
(1)企业知识库
内部文档问答(如员工手册、技术文档)。
客户支持:快速检索产品说明书生成回答。
(2)学术研究
从海量论文中检索相关研究,生成综述。
(3)法律 & 医疗
法律条文、病例报告的精准查询和摘要。
(4)个人知识管理
对个人笔记、收藏文章进行智能搜索和总结。
4. RAG 的局限性
(1)依赖检索质量 如果检索库不完整或噪声多,生成结果也会受影响。
(2)延迟较高 检索 + 生成两步流程,比纯生成慢(可通过缓存优化)。
(3)上下文长度限制 LLM 的输入长度有限(如 GPT-4 Turbo 的 128K),可能截断长文档。
5. 对比其他方案
方案 | 优点 | 缺点 |
---|---|---|
纯 LLM | 响应快,通用性强 | 知识静态,易幻觉 |
微调 | 适应特定任务 | 成本高,难更新 |