openCV
文章平均质量分 92
PTYX
Android软件工程师
展开
-
linux下opencv下载和编译
原文地址:http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html#linux-installation获取最新稳定版本的openCV去到opencv在SourceForge上的主页下载源码包并解压从Git仓库获取最新的openCV启动Git客户端并且克隆open翻译 2013-08-23 15:39:15 · 4171 阅读 · 0 评论 -
linux下使用python进行opencv开发
首先安装opencv我用的linux发行版是ArchLinux,所以直接sudo pacman -S opencv里面就包含了opencv的python扩展。用pacman -Ql opencv可以看到这么几行:opencv /usr/lib/python2.7/opencv /usr/lib/python2.7/site-packages/opencv /usr/li原创 2013-08-24 10:15:03 · 6883 阅读 · 0 评论 -
numpy中的ndarray对象
原文地址:http://hyry.dip.jp/tech/book/page/scipy/numpy_ndarray.htmlndarray对象函数库的导入本书的示例程序假设用以下推荐的方式导入NumPy函数库:import numpy as np创建NumPy的函数和方法都有详细的说明文档和用法示例。在IPyt转载 2013-08-28 17:21:55 · 6332 阅读 · 0 评论 -
linux下用python进行opencv开发----简单的图片操作
初学opencv做的例子程序,保存一下。之所以选择用python,是因为python上手快,开发快。#!/usr/bin/python2# coding: utf-8import cv2import numpy as np#原始图片image=cv2.imread('./meinv2_original.jpg', cv2.CV_LOAD_IMAGE_COLOR)cv原创 2013-08-30 11:02:02 · 15477 阅读 · 1 评论 -
linux下编译mergevec和vec2img
用opencv训练分类器比较有用的两个辅助工具。项目主页:http://note.sonots.com/SciSoftware/haartraining.html#v6f077ba项目主页上有编译好的exe文件,但没有linux下面编译好的二进制文件。mergevec用于合并多个vec文件。用法:mergevec #类似于创建样本和训练的描述文件,一个存有原创 2013-09-07 22:02:48 · 1514 阅读 · 0 评论 -
linux下编译imageclipper
学习opencv训练分类器,网上看到有提imageclipper这个辅助工具的,可以很方便的截取ROI并保存,记录位置和大小等相关信息,在准备正样本时非常有用。其项目主页:http://code.google.com/p/imageclipper/imageclipper是多平台的,windows和linux下均可以编译,其主页上有详细的介绍如何在相应平台下编译,并且使用方法,生成正样本描原创 2013-09-05 16:35:27 · 2267 阅读 · 0 评论 -
训练级联分类器
原文地址:http://blog.csdn.net/ariesjzj/article/details/8639208物体检测方法大体可分为两类,基于知识的方法和基于统计的方法。前者如template matching, surf/sift detector等等。这些方法都基于我们对于识别目标已有比较清晰的刻画。虽然有些特征能抗一定的形变,但总体泛化性不够强。如果检测目标比较转载 2013-09-05 16:55:15 · 3440 阅读 · 0 评论 -
弱分类器和强分类器
原文地址:http://blog.csdn.net/qinzx2004/article/details/2824323英文原文地址:http://www.ricoh.com/about/company/technology/voice/column/020.html将英文原文中的图片搞过来了。动物,包括人类在内,通常是通过判断周边的情况后做出行动,这种反转载 2013-10-15 14:24:18 · 27702 阅读 · 2 评论 -
Haar分类器
原文地址:http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html由于工作需要,我开始研究人脸检测部分的算法,这期间断断续续地学习Haar分类器的训练以及检测过程,在这里根据各种论文、网络资源的查阅和对代码的理解做一个简单的总结。我试图概括性的给出算法的起源、全貌以及细节的来龙去脉,但是水平有限,只能解其大概,希望对转载 2013-10-15 18:08:29 · 1866 阅读 · 0 评论