On Hat Puzzle 1.2: Solutions

This section we show the solution and comments of the hat puzzle [from winkler's paper]:


Colored Hats (simultaneous version): 

It is not immediately obvious that any players can be saved. Often the first strategy considered is "guessing the majority color" ; e.g. if n=10, each player guesses the color he sees on 4 or more of his 9 teammates. But this results in 10 executions if the colors are distributed 5-and-5, and the most obvious modications to this scheme also result in total carnage in the worst case. 

However, it is easy to save \lfloor n/2 \rfloor players by the following device. Have the players pair up (say husband and wife); each husband chooses the color of his wifes hat and each wife chooses the color she doesn't see on her husbands hat. Clearly, if a couple have the same color hats, the husband will survive; if different ,the wife will survive. 

To see that this is best possible, imagine that the colors are assigned uniformly at random (e.g. by fair coin-flips), instead of by an adversary. Regardless of strategy the probability that any particular player survives is exactly 1/2; therefore the expected number of survivors is exactly n/2. It follows that the minimum number of survivors cannot exceed \lfloor n/2 \rfloor.


Colored Hats (sequential version):

This version of the hats game was passed to me by Girija Narlikar of Bell Labs, who heard it at a party (the previous version was my own response to Girija's problem, but has no doubt been considered many times before). For the sequential version it is easy to see that \lfloor n/2 \rfloor can be saved; for example, players n, n-2, n-4 etc. can each guess the color of the player immediately ahead, so that players n-1, n-3 etc. can echo the most recent guess and save themselves.

It seems like some probabilistic argument such as provided for the simultaneous version should also work here, to show that \lfloor n \rfloor is the most that can be saved. Not so : in fact, all the players except the last can be saved!

The last player (poor fellow) merely calls "red " if he sees an odd number of red hats infront of him, and "blue" otherwise. Player n-1 will now know the color of his own hat; for example, if he hears player n guess "red " and sees an even number of red hats ahead, he knowshis own hat is red. 

Similar reasoning applies to each player going up the line. Player i sums the number of red hats he sees and red guesses he hears; if the number is odd he guesses "red", if even he guesses "blue", and he's right (unless someone screwed up).

Of course the last player can never be saved, so n-1 is best possible.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值