迦南村夫
码龄16年
关注
提问 私信
  • 博客:98,880
    社区:2
    98,882
    总访问量
  • 暂无
    原创
  • 560,396
    排名
  • 80
    粉丝
  • 0
    铁粉

个人简介:由于刚涉该领域站内的博文大多是转载关注的朋友的主要是自己查找方便大多未经作者同意在此感谢原作者同时也表示歉意.

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2009-06-18
博客简介:

君子玉德

查看详细资料
个人成就
  • 获得41次点赞
  • 内容获得4次评论
  • 获得159次收藏
创作历程
  • 1篇
    2019年
  • 9篇
    2018年
  • 1篇
    2016年
  • 8篇
    2014年
  • 9篇
    2013年
  • 1篇
    2012年
TA的专栏
  • 视觉问答
    1篇
  • visual reasoning
    4篇
  • meta-learning
    1篇
  • NLP
    1篇
  • 科研经验
    13篇
  • 视频追踪
    1篇
  • 深度学习
    3篇
  • 机器学习
    2篇
  • LDA主题模型
    2篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理数据分析
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

473人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com。也可以加我的微博:@leftnoteasy前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去...
转载
发布博客 2019.10.11 ·
245 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

概率语法图模型发力,小样本学习的突破

2017年10月26日,科学期刊《Science》上刊发了知名人工智能创业公司Vicarious的一项最新研究[1] --- “A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs”。CAPTCHA是Completely Automated Public Turi...
转载
发布博客 2018.09.26 ·
2389 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

情感分析Sentiment Analysis 知识资料全集(入门/进阶/论文/综述/视频/专家,附查看

情感分析 ( Sentiment Analysis ) 专知荟萃入门学习 进阶论文 Tutorial 综述 代码 视频教程 领域专家入门学习斯坦福大学自然语言处理第七课“情感分析(Sentiment Analysis)” [http://52opencourse.com/235/%E6%96%AF%E5%9D%A6%E7%A6%8F%E5%A4%A7%E5%AD%A6%E8%...
转载
发布博客 2018.09.21 ·
6012 阅读 ·
8 点赞 ·
2 评论 ·
69 收藏

视觉问答VQA知识资料全集

视觉问答(Visual Question Answering,VQA)专知荟萃入门学习 进阶论文 Attention-Based Knowledge-based Memory Network Video QA 综述 Tutorial Dataset Code 领域专家入门学习基于深度学习的VQA(视觉问答)技术 [https://zhuanlan.zhih...
转载
发布博客 2018.09.21 ·
3881 阅读 ·
4 点赞 ·
0 评论 ·
40 收藏

百家争鸣的Meta Learning/Learning to learn

1 前言Meta Learning 元学习或者叫做 Learning to Learn 学会学习 已经成为继Reinforcement Learning 增强学习之后又一个重要的研究分支(以后仅称为Meta Learning)。对于人工智能的理论研究,呈现出了Artificial Intelligence --> Machine Learning --> Deep Learni...
转载
发布博客 2018.09.21 ·
1641 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

CVPR2018 | CMU&谷歌Spotlight论文:超越卷积的视觉推理框架

人类在看到图像时可以进行合理的推理与预测,而目前的神经网络系统却还难以做到。近日,来自卡耐基梅隆大学(CMU)的陈鑫磊(现 Facbook 研究科学家)、Abhinav Gupta,谷歌的李佳、李飞飞等人提出了一种新型推理框架,其探索空间和语义关系的推理性能大大超过了普通卷积神经网络。目前该工作已被评为 CVPR 2018 大会 Spotlight 论文。近年来,我们在图像分类 [ 16 ]、...
转载
发布博客 2018.09.21 ·
554 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

视觉推理(Visual Reasoning),神经网络也可以有逻辑

1 前言在我们的上一篇文章 最前沿:百家争鸣的Meta Learning/Learning to learn 中,我们谈到了星际2 需要AI具备极好的逻辑推理能力才行,那么实际上逻辑推理这个问题学术界一直有研究,但是进展缓慢。吴恩达Andrew Ng也说过当前的深度学习技术比较适合那些对人来说可以快速解答的问题,比如说图像识别,我们不用怎么思考,语音识别,我们也不用怎么思考。但是吴恩达这么说也...
转载
发布博客 2018.09.20 ·
4698 阅读 ·
11 点赞 ·
1 评论 ·
26 收藏

标题党太吓人?这篇文章会告诉你DeepMind关系推理网络的真实面貌

DeepMind开发了一种神经网络,能够感知其周围的物体。实际上这种报导不仅仅是误导性的,而且使得很多不明真相的吃瓜群众感到恐慌:AI真的已经强到如此地步了吗?在这篇文章中,将介绍DeepMind论文:A simple neural network module for relational reasoning,试着通过最简单的方式介绍这个最新的架构。什么是关系推理(Relational ...
转载
发布博客 2018.09.20 ·
213 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LDA主题模型浅析

  上个月参加了在北京举办SIGKDD国际会议,在个性化推荐、社交网络、广告预测等各个领域的workshop上都提到LDA模型,感觉这个模型的应用挺广泛的,会后抽时间了解了一下LDA,做一下总结:(一)LDA作用        传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个...
转载
发布博客 2018.06.10 ·
5513 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

Introduction to Probabilistic Topic Models

此文为David M. Blei所写的《Introduction to Probabilistic Topic Models》的译文,供大家参考。摘要:概率主题模型是一系列旨在发现隐藏在大规模文档中的主题结构的算法。本文首先回顾了这一领域的主要思想,接着调研了当前的研究水平,最后展望某些有所希望的方向。从最简单的主题模型——潜在狄立克雷分配(Latent Dirichlet Allocation,...
转载
发布博客 2018.06.10 ·
360 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

理解LSTM网络

本文为博客《Understanding LSTM Networks》的翻译文章原文链接: http://colah.github.io/posts/2015-08-Understanding-LSTMs/Recurrent Neural Networks人们思考问题时,不会在每一秒都从头开始想,而不考虑以往的记忆和经验。比如,读这篇文章的时候,你每读一个词都会结合前面读到的几个
转载
发布博客 2016.10.15 ·
3422 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

zz非负矩阵分解:数学的奇妙力量

计算机是人类解决难题、探索未知以及提供娱乐的绝佳工具。在高效运行着的各种计算机应用背后,融汇了人类在物理、电子和数学等多门学科的高超智慧。严密的数学使得计算机能高效执行人类指令,控制内部各种数据流的走向,因此在现代计算机科学研究中,数学的基础地位和重要作用无可替代:它使我们最大程度利用有限的硬件、软件资源,它使我们能够在浩瀚的数据海洋中快速查到所关心的信息……数学与计算机科学一起演绎了许多精彩的故
转载
发布博客 2014.09.03 ·
794 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

傅里叶分析之掐死教程(完整版)

作 者:韩 昊知 乎:Heinrich微 博:@花生油工人知乎专栏:与时间无关的故事谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。——更新于2014.6.6,想直接看更新的同学可以直接跳到第四章————我保证这篇文章和你以前看过的所有文章都不同,
转载
发布博客 2014.08.30 ·
608 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

关于文献阅读和寻找新的科研题目

自从2007年一月去我即将读研的清华大学计算机图形学组做本科毕业设计开始,我就陷入了一个困扰我许久的问题之中:如何阅读文献,如何寻找科研题目?之后长达三年的时间,我一直被这个问题深深困扰,直至2009年底首次以第二作者发表论文(Sketch2Photo和Resizing)才稍微有缓和。在之后的很多年,我也一直试图总结相关的经验教训,期望有一天这些经验教训有一天也可以帮助和我一样饱受困扰的同学,特别
转载
发布博客 2014.08.15 ·
763 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

别人整理的资源

本人常用资源整理(ing...) Deep Learning(深度学习):ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):一ufldl的2个教程(这个没得说,入门绝对的好教程,Ng的,逻辑清晰有练习):二Bengio团队的deep learning教程,用的theano库,主要是rbm系列,搞python的可以参考,很不错。deeplear
转载
发布博客 2014.07.31 ·
843 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

推荐视觉跟踪领域的几个研究者

这里只限于传统方法,主要是两方面:Mean Shift, Particle Filter。Ido Leichter  : Technion - Israel Institute of Technology -> Microsof@ Israel主要研究内容:粒子滤波, Mean Shift代表论文:[1] I. Leichter. Mean Shift Trackers wit
转载
发布博客 2014.07.31 ·
947 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

美国航空航天四大机构报告(PB报告、AD报告、NASA报告和DOE报告)

什么是AD报告、AIAA?26.06.2003 | Categori 今天去书库借书,正遇上一个读者问馆里有没收藏AD paper?还有什么AIAA……哇,这是什么东西?那个什么AD报告怎么这么耳熟呢?好象在编目是有遇过啊,但帮读者在计算机上查询未果,只好请她到咨询部去打听了。回来后,仔细搜索了一下,终于知道那些什么AD报告、AIAA是什么东东了:1、AD报告是美国陆海空三
转载
发布博客 2014.04.13 ·
16368 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

为什么不去读顶级会议上的论文?适应于机器学习、计算机视觉和人工智能

http://emuch.net/html/201012/2659795.html看了版上很多贴子,发现很多版友都在问“热门研究方向”、“最新方法”等。有同学建议国内某教授的教材、或者CNKI、或者某些SCI期刊。每当看到这种问题,我都有点纳闷,为什么不去读顶级会议上的论文?我无意否认以上文献的价值,但是在机器学习、计算机视觉和人工智能领域,顶级会议才是王道。国内教材和CNKI上的
转载
发布博客 2014.04.13 ·
808 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

为什么不去读顶级会议上的论文?适应于机器学习、计算机视觉和人工智能

文章原文:看了版上很多贴子,发现很多版友都在问“热门研究方向”、“最新方法”等。有同学建议国内某教授的教材、或者CNKI、或者某些SCI期刊。每当看到这种问题,我都有点纳闷,为什么不去读顶级会议上的论文?我无意否认以上文献的价值,但是在机器学习、计算机视觉和人工智能领域,顶级会议才是王道。国内教材和CNKI上的基本是N年前老掉牙的东西。有人会质疑这些会议都只是EI。是的,这的确非常
转载
发布博客 2014.04.13 ·
763 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

常用牛人主页链接(计算机视觉、模式识别、机器学习相关方向,陆续更新。。。。) .

转载:http://blog.csdn.net/shfkuang/article/details/7700939牛人主页(主页有很多论文代码)Serge Belongie at UC San DiegoAntonio Torralba at MITAlexei Ffros at CMUCe Liu at Microsoft Research New EnglandVitto
转载
发布博客 2013.12.04 ·
2668 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏
加载更多