简介
以下是本人在学习matlab过程中做的笔记,发布在此也是希望能对有些人有所帮助,我自己也可以是不是回顾复习,如果大家喜欢,希望可以给博主点个赞
0.matlab安装下载教程
博主想多点关注多点爱,想下载安装免费版matlab的点赞加收藏私信找博主要哦,2021a最新版迅雷下载,网速快的话很快就能下载完成,不需要像其他在官网和百度网盘下载很慢哦,安装操作也非常简便啦。
1.Matlab变量及命名规则
Matlab变量及命名规则
Matlab中所有的变量都是用矩阵形式来表示的,即所有的变量都表示一个矩阵或者一个向量。其命名规则如下:
(1)变量名对大小写敏感;
(2)变量名的第一个字符必须为英文字母,其长度不能超过31个字符;
(3)变量名可以包含下连字符、数字,但不能包含空格符、标点。
2.各个符号的作用
特别注意:%表示注释,分号的作用
3.矩阵:
% A’表示A的转置
% A(;)表示A按列拉伸成一列
% inv(A)表示A的逆,A必须为方阵
% zero(x,y,z)表示创建一个z维的x行y列的全零矩阵
4.随机数矩阵:
% 1.rand(m,n,“参数”)生成一个m行n列的指定参数的均匀分布的随机数矩阵,数值范围为(0,1)
% 2.randn(m,n)生成标准正太分布的随机数矩阵(均值为0,方差为1)
% 3.randi(MAX)生成均匀分布的随机整数,在(0,MAX]之间的数
%用法:randi(MAX,m,n)或者randi([MIN,MAX],m,n)数值分别在(0,MAX]和[MIN.MAX]之间
5.元胞数组
% 1.定义元胞数组
A = cell(1,6)
%magic幻方
A = magic(n)% 生成一个n阶的幻方(数独的规则)
6.结构体
books = struct(‘name’,[30,40],[90,100],“jweo”)%类似python的字典,字段和值必须成对出现,
%字段名称必须为非空字符向量或字符串标量。
7.矩阵操作:
% 1.定义和构造
A = [1,2,3,4,5,6,7,8,9]
B = [1 2 3 4; 5 6 7 8]%分号表示分行
b = 1:3:9 % 表示生成1—9步长为3的向量
C = repmat(b,3,4) % 将矩阵b横向重复3次,纵向重复4次
D = ones(3,5) % 生成一个3*5的全一矩阵
8.矩阵的四则运算
% + - .* ./ 表示两个大小相同的矩阵对应两项做加减乘除
% AB 表示两矩阵执行叉乘,矩阵大小需要满足A的列数等于B的行数
% A/B 表示两矩阵执行除法,相当于Ainv(B)(B的逆)矩阵大小需要满足A的列数等于B的行数
9.矩阵的下标
A = magic(5)
B = A(2,3)
C = A(4,1:3)
D = A(:,4)
[m,n] = find(C==8)% 找出A中大于20的需要值
10.for循环结构
%for 循环变量 = 初值:步长:终值
% 语句体
%end
sum = 0;
for i = 1:2:10
sum = sum + i;
end
11.while循环结构
%while 条件表达式
% 语句体
%end
%条件表达式成立循环执行语句体里面的直到条件不成立,不成立直接到end之后
sum1 = 0
n = 8
while n<10
sum1 = sum1 + n
n = n -1
end
12.if…else…结构
%if 条件表达式
% 语句体
%end
%条件表达式成立执行语句体里面的,不成立直接到end之后
a = 18;
b = 20;
if a<b
“成立”
end
13.二维平面绘图
x = 0:0.01:2pi%pi表示Π
y = sin(x)
figure %建立一个幕布,具体作用可以理解为:
%如果有这一句,每次执行该语句都会重新创建一个幕布来绘制下面的坐标图,你每次都有一张新的纸
%没有的话每次画的图都覆盖掉之前画的,意思就是你只有一张纸
plot(x,y) %绘制一个坐标图,参数成对出现,可同时画多条函数曲线在同一坐标系中
title(‘y = sin(x)’) %添加标题
xlabel(‘X’) %定义y轴标签
ylabel(‘sin(x)’) %定义x轴标签
xlim([0 2pi]) %将函数图形的左右边界定住,大家可以通过不执行这一句和执行这一句观察函数图像看看作用
% 还有很多属性比如线条的颜色,线条的形状等等,大家可以根据需要仔细那个搜索
13.三维绘图
t = 0:pi/50:10*pi
figure
plot3(sin(t),cos(t),t) %绘制一个三维坐标图
xlabel(‘sin(t)’)
ylabel(‘cos(t)’)
zlabel(‘t’)
以上是matlab最常见的一些基本知识,希望大家看完之后能有很多收获,重点还是要自己多实践,不懂得可以通过执行来观察差别从而理解