- 博客(179)
- 资源 (1)
- 收藏
- 关注
原创 【ROS仿真实战】获取机器人在gazebo位置真值的三种方法(三)
在ROS和Gazebo中,获取机器人的位置信息通常通过ROS消息传递进行。在这篇文章中,我们将介绍三种获取机器人在Gazebo中位置真值的方法:使用ROS tf库、使用自己编写Gazebo Model Plugin以及libgazebo_ros_p3d Plugin。总的来说,无论使用哪种方法,获取机器人在Gazebo中位置信息的基本步骤都是订阅ROS话题或使用插件提供的接口,并将机器人的位置信息发送到ROS话题中。在进行ROS机器人算法开发和测试时,选择适合自己的方法,根据实际需求和问题进行调试和优化。
2023-04-28 18:02:07
7374
原创 【ROS仿真实战】机器人模型描述文件介绍(二)
URDF和XACRO是ROS机器人领域中用于描述机器人模型的两种XML格式文件,都是使用XML语法来定义机器人模型的结构、物理特性以及运动学参数等。URDF (Unified Robot Description Format)和XACRO (XML Macros)是ROS中常用的两种机器人建模语言。虽然它们都是用于定义机器人模型的语言,但它们有不同的特点和使用场景。本文将详细介绍URDF和XACRO的区别,另外对于URDF和XACRO如何选择三维模型上也会进行解释。
2023-04-28 17:12:58
3281
原创 【运动规划算法项目实战】如何实现机器人多目标点导航(附ROS C++代码)
在ROS机器人应用中,实现机器人多目标点导航是非常常见的需求。本文将介绍如何使用ROS和actionlib来实现机器人的多目标点导航,目标点信息将被记录在YAML文件中。我们可以通过使用MoveBaseAction来实现机器人的导航功能。MoveBaseAction是一个ROS中的action类型,它提供了控制机器人到达目标点的API。它可以接收由ROS节点发布的目标点,并为机器人提供适当的控制以达到目标点。在本文中,我们将使用actionlib库来实现MoveBaseAction的客户端。
2023-04-28 16:44:11
3940
5
原创 【ROS仿真实战】Gazebo仿真平台介绍及安装方法(一)
Gazebo仿真平台是一个广泛应用于机器人研发、测试和教育等领域的开源软件。它可以模拟机器人的运动、感知和控制等行为,并提供了丰富的物理引擎、传感器模拟和ROS集成等功能,使得使用者可以高效地进行机器人仿真和开发。本文将介绍Gazebo仿真平台的基本概念和安装方法。Gazebo的历史和发展可以追溯到2002年,当时由美国南加州大学的Andrew Howard教授和Nate Koenig博士等人创建了一个基于OpenGL的3D仿真引擎,用于模拟室内机器人的运动和控制。
2023-04-28 16:11:39
20591
原创 【运动规划算法项目实战】如何实现简单的状态机(附ROS C++代码)
在机器人算法中,状态机和行为树是常用的两种设计模式。它们能够帮助机器人在复杂的环境中更好地执行任务。在本篇博客中,我将向大家介绍状态机和行为树的基本概念、原理和使用方法,希望能够帮助各位机器人开发者更好地理解和应用它们。状态机是一种表示机器人状态转移的形式化模型,它由一组状态和一组转移函数组成。在机器人中,状态可以表示机器人的状态,例如运动状态、感知状态、控制状态等。转移函数则表示机器人在不同状态之间的转移,可以是手动定义的,也可以是根据规则自动产生的。状态机可以分为有限状态机和无限状态机两种。
2023-04-28 16:08:35
2024
原创 【AI生产力工具】Upscale.media:用AI技术提升照片质量,让你的作品更出色
在如今的数字时代,图片已经成为我们日常生活中不可或缺的一部分,从社交媒体到电子商务网站,从广告宣传到个人生活,都需要使用各种形式的图片。然而,在实际应用中,我们常常会遇到一些图片分辨率过低、尺寸过小的问题,这时候就需要一些强大的工具来帮助我们提升图片质量,这就是今天要介绍的 AI 工具:Upscale.media。
2023-04-27 16:52:53
3561
原创 【运动规划算法项目实战】如何在栅格地图中实现A*算法(附ROS C++代码)
在机器人的路径规划中,栅格地图常常被用于描述环境的空间布局。A*算法是一种基于栅格地图的搜索算法,用于寻找两个点之间最短路径。在栅格地图中,环境被划分成一系列的方格,每个方格表示环境中的一个离散区域。这种表示方法可以方便的计算两点之间的距离,同时也便于搜索算法的实现。在ROS中,栅格地图通常使用nav_msgs/OccupancyGrid数据类型来表示。该数据类型包含了地图的元信息(如分辨率、地图大小等)以及每个栅格的占用状态信息。header:包含标准的ROS消息头,如时间戳、坐标系等。
2023-04-24 15:33:11
2095
原创 【AI生产力工具】Midjourney:为创意人士提供创造性灵感和支持的工具
Midjourney是一个强大的工具,可以为用户提供灵感、指导和支持,帮助用户在创意和设计方面更具创造力和竞争力。它的易用性和高级功能使得它成为了创意人士必不可少的工具之一。如果你正在寻找一个灵感和创新的源泉,那么Midjourney是一个值得一试的工具。
2023-04-21 00:15:29
1655
原创 【AI生产力工具】ChatPDF:将 PDF 文档转化为交互式阅读体验的利器
随着数字化时代的发展,PDF 文件已经成为了日常工作和学习中不可或缺的一部分。然而,仅仅将 PDF 文件上传或下载并不一定能够满足我们的需求。比如,我们想要从大型的 PDF 文件中快速提取信息,如手册、论文、法律合同、书籍和研究论文,但在 PDF 文件中寻找这些信息却非常繁琐。这时,我们需要一款能够让我们像与人对话一样与 PDF 文档交互的工具——ChatPDF。ChatPDF 的出现,让我们不再需要费劲地在 PDF 文件中寻找所需信息,提高了我们的工作效率和学习效率。
2023-04-20 23:13:15
3041
1
原创 【运动规划算法项目实战】如何加载csv文件的路径信息(附ROS C++代码)
在运动规划算法项目中,路径规划是非常重要的一环。在实际应用中,我们通常需要将预先规划好的路径以某种方式加载到程序中进行后续处理和运动控制。而CSV文件作为一种常见的数据交换格式,也被广泛用于存储路径信息。因此,学会如何加载CSV文件中的路径信息将是非常有帮助的。在ROS中,我们可以使用C++和Python等多种编程语言来加载CSV文件。其中,C++作为ROS的主要开发语言,具有良好的性能和稳定性,更适合在实际应用中使用。下面我们将以C++为例,介绍如何加载CSV文件中的路径信息。
2023-04-20 17:43:33
1297
原创 【运动规划算法项目实战】路径规划中常用的抽稀算法(附ROS C++代码)
抽稀(Simplification)算法是指在保持数据尽可能不失真的前提下,对数据进行精简处理,减少数据的数量,便于数据的存储和处理。路径规划中,抽稀算法的作用是将原始路径中的冗余点去除,从而减小路径点的数量,降低计算量和存储量,同时保留路径的形状特征和轨迹信息,确保路径规划的精度和实时性。常见的抽稀算法有 Douglas-Peucker算法和垂距限值法。
2023-04-20 08:00:20
3182
2
原创 【运动规划算法项目实战】路径规划中常用的插值方法(附ROS C++代码)
常见用于处理路径平滑的插值算法主要包括线性插值、三次样条插值、B样条插值和贝塞尔曲线插值等,下面分别介绍它们的优缺点和使用场景。不同的插值算法具有不同的优缺点,适用于不同的路径规划场景。例如,线性插值适用于直线路径规划;三次样条插值适用于需要较高路径平滑度的场景,如机器人运动;B样条和Bezier曲线插值适用于需要局部调整路径形状的场景,如避障等。
2023-04-19 17:39:10
2555
1
原创 【论文解读】在复杂城市环境中基于时空语义走廊的安全轨迹生成
在本文中,我们提出了一种新颖的统一时空语义走廊(SSC)结构,它为不同类型的语义元素提供了一定程度的抽象。 SSC 由一系列相互连接的无碰撞立方体组成,动态约束由时空域中的语义元素构成。轨迹生成问题归结为一般二次规划 (QP) 公式。由于统一的 SSC 表示,我们的框架可以推广到语义元素的任何组合。此外,我们的公式通过使用分段贝塞尔曲线参数化的凸包和 Hodograph 特性提供了整个轨迹安全且满足约束的理论保证。
2022-01-24 10:47:14
3312
原创 【Apollo 6.0算法解析】Planning模块简介
本文主要是简单介绍下 Apollo 中的 Planning模块,包括 Apollo 使用到的决策规划算法(详细的算法讲解和代码解析会之后的文章进行更新)。
2021-12-24 10:59:00
3307
1
原创 【Apollo 6.0学习笔记】Cyber RT API使用
本文档对如何创建、操作和使用 Cyber RT 的 API 进行了广泛的技术深入探讨。
2021-12-11 11:13:08
2923
2
原创 【Apollo 6.0项目实战】LGSVL 高精地图使用教程
本文讲解的是如何使用 LGSVL 仿真器提供的高精地图,并实现车辆在特定场景下的自动驾驶。
2021-12-11 11:05:36
5088
5
原创 【Apollo 6.0学习笔记】Apollo Cyber RT介绍
本文主要介绍 Apollo Cyber 架构、一些基本概念以及常用的调试工具。
2021-12-10 11:29:44
4705
1
原创 【Apollo 6.0项目实战】LGSVL 与 Apollo 6.0联合仿真教程
本文教程在Ubuntu 20.04 下实现 LGSVL 与 Apollo 6.0的联合仿真。
2021-12-09 17:21:08
5913
6
原创 【Apollo 6.0项目实战】Control模块
本文讲解的是 Apollo 中的 Control 模块。主要目的是简单了解下Apollo 控制模块的基本知识、控制模块的组成和输入输出、调试工具 plot_control 和 realtime_test 的使用。
2021-12-09 14:12:28
3287
2
原创 【Apollo 6.0项目实战】Planning模块
本文主要简单介绍下 Apollo 的规划模块、在 LGSVL 环境中实现规划模块的调用以及如何使用 Dreamland 平台进行算法的测试。
2021-12-08 18:12:49
2104
原创 【Apollo 6.0项目实战】Localization模块
本文讲解的是 Apollo 中的 Localization 模块。当前, Apollo 提供的定位方案有三种,分别是 RTK(Real Time Kinematic)定位模块、MSF(Multi-Sensor Fusion)定位模块以及 NDT(Normal Distribution Transform)定位模块。本文中重点讲解的是MSF(Multi-Sensor Fusion)定位模块。
2021-12-08 15:48:15
2808
1
原创 【Apollo 6.0项目实战】Perception模块
本文讲解的是如何在 LGSVL仿真器中测试自动驾驶车辆的感知能力,包括视觉感知、激光雷达感知以及多传感器的感知融合,主要目的是初步了解到 Apollo 感知模块整体结构以及各个模块的主要组成部分,对各感知模块的输入输出有比较清晰的认识。
2021-12-01 16:30:48
3468
2
原创 【Apollo 6.0项目实战】Canbus模块
本文讲解的是在 LGSVL 仿真环境中,如何使用Apllo提供的底盘调试工具对车辆底盘进行调试。主要的目的是了解下 canbus 模块、canbus_teleop 、canbus_tester 以及 cyber_monitor工具的使用。
2021-11-30 10:00:28
2703
1
原创 【Apollo 6.0项目实战】HD-Map模块
文章目录前言一、获取数据集二、RelativeMap 地图制作三、Routing 地图制作参考前言Ubuntu 20.04Apollo 6.0RelativeMap 地图的制作实际是为车辆的行驶绘制一条参引线,并把参引线的数据主题发布出去,使用该主题的模块是 relative_map,relative_map 模块把参引线和计算出的车道线信息封装成主题发布,planning 模块订阅该主题信息进行路径规划。一、获取数据集可以通过仿真或者现实环境来录制获取数据集,使用以下指令进行录制cybe
2021-11-30 09:30:44
4054
4
原创 【Apollo 6.0项目实战】Dreamview的使用
文章目录前言一、布局和特点二、使用步骤总结前言Dreamview 是一个网络应用程序可视化相关自动驾驶模块的当前输出,例如规划轨迹、汽车定位、底盘状态等;提供人机交互界面以供户查看硬件状态、开启/关闭模块、启动自动驾驶汽车;提供调试工具,例如 PnC Monitor 以有效跟踪模块问题。一、布局和特点二、使用步骤总结...
2021-10-25 14:05:25
8650
2
原创 【论文解读】DSVP:通过动态扩展实现快速探索的双阶段视点规划器
我们提出了一种高效地探索高度复杂环境的方法。该方法包含两个规划阶段 ,扩展地图边界的探索阶段和将机器人明确转移到环境中不同子区域的重定位阶段。探索阶段发展局部快速探索随机树(RRT) 环境的自由空间,以及重定位阶段通过映射环境来维护一张全局地图,都是动态扩展的过度重规划步骤。通过将该方法与现有先进的前沿算法在各种具备挑战性的模拟和真实环境中进行实验对比,实验结果比较表明,我们的方法在使用较少处理的空间探索空间方面的效率是现有方法的两倍。此外,我们发布了一个基准环境来评估探索算法并促进自主导航系统的开发。
2021-09-30 16:50:24
2711
2
原创 [决策规划算法]自动驾驶中的行为决策
文章目录前言一、有限状态机二、决策树三、基于知识的推理决策四、 基于价值的决策模型前言在多智能体决策的复杂环境中(存在感知不确定性情况下)进行规划这一问题一直是L4、L5级自动驾驶技术的核心瓶颈之一。文章转自自动驾驶中的决策规划算法概述。一、有限状态机自动驾驶车辆最开始的决策模型为有限状态机模型,车辆根据当前环境选择合适的驾驶行为,如停车、换道、超车、避让、缓慢行驶等模式,状态机模型通过构建有限的有向连通图来描述不同的驾驶状态以及状态之间的转移关系,从而根据驾驶状态的迁移反应式地生成驾驶动作
2021-07-22 11:46:32
7963
原创 【论文解读】空中机器人利用机载电脑感知计算躲避动态小障碍物
标题:Fast-Tracker2.0: Improving Autonomy of Aerial Tracking with Active Vision and Human Location Regression作者:Neng Pan, Ruibin Zhang, Tiankai Yang, Chao Xu, Fei Gao来源:https://arxiv.org/abs/2103.06522代码:暂无文章目录摘要一、pandas是什么?二、使用步骤1.引入库2.读入数据总结摘要一、p.
2021-07-21 23:17:37
2233
1
原创 [技术文档分享]运动规划篇
文章目录前言一、 自动驾驶二、无人机三、机器人导航1. 半杯茶的小酒杯2. 泡泡机器人前言对至今为止收藏的一些内容比较优质的技术推文进行分类整理。持续更新ing…一、 自动驾驶知荐 | 实例详解自动驾驶中的最优路径规划基于Frenet优化轨迹的⾃动驾驶动作规划⽅法社群分享内容 | Lattice Planner规划算法自动驾驶决策控制及运动规划史上最详细最接地气总览现状PonyAI技术解读:自动驾驶中轨迹规划的探索和挑战小马智行:图片自动驾驶轨迹规划年度盘点!2020 Apollo自
2021-07-09 18:38:32
1807
原创 【运动规划算法项目实战】Fast-Tracker代码分析
Fast-Tracker是浙江大学空中机器人实验室提出的一种系统化的解决方案,它可以无人飞行器 (UAV) 在混乱复杂的环境中自主安全地跟踪目标。目标运动预测和轨迹跟踪规划。目标运动预测:利用目标历史的观测值信息,在考虑目标动态约束的情况下预测目标的未来运动轨迹。轨迹跟踪规划器:传统的规划结构。前端采用考虑运动学的搜索方法,通过启发式的方法搜索出一条安全的跟踪轨迹。后端优化器将其优化为时空最优且无碰撞的轨迹。Fast-tracker整体流程总结。第一步:目标的运动预测。
2021-06-26 19:07:06
4612
3
【运动规划算法项目实战】Artificial Potential Field算法(附ROS C++代码)
2023-09-26
【运动规划算法项目实战】Dynamic Window Approach算法(附ROS C++代码)
2023-09-26
【运动规划算法项目实战】如何加载csv文件的路径信息(ROS源码)
2023-04-20
draw-line-path-绘制固定的路径ROS C++代码
2023-04-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅