【大数据】【Spark】Spark入门

由于Spark程序的编写最好使用Scala语言,可参照博主以下Scala入门文章
链接:https://blog.csdn.net/treesorshining/article/details/124697102

1.创建Maven项目

1.增加Scala插件

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VBoOaSvf-1659622620281)(Spark学习笔记.assets/image-20211118203900277.png)]

2.增加依赖关系

修改 Maven 项目中的 POM 文件,增加 Spark 框架的依赖关系。

<dependencies>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.12</artifactId>
        <version>3.0.0</version>
    </dependency>
</dependencies>
<build>
    <plugins>
        <!-- 该插件用于将 Scala 代码编译成 class 文件 -->
        <plugin>
            <groupId>net.alchim31.maven</groupId>
            <artifactId>scala-maven-plugin</artifactId>
            <version>3.2.2</version>
            <executions>
                <execution>
                    <!-- 声明绑定到 maven 的 compile 阶段 -->
                    <goals>
                        <goal>testCompile</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-assembly-plugin</artifactId>
            <version>3.1.0</version>
            <configuration>
                <descriptorRefs>
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
            </configuration>
            <executions>
                <execution>
                    <id>make-assembly</id>
                    <phase>package</phase>
                    <goals>
                        <goal>single</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

2.WordCount

// 创建 Spark 运行配置对象
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount")
// 创建 Spark 上下文环境对象(连接对象)
val sc : SparkContext = new SparkContext(sparkConf)
// 读取文件数据
// 一行一行的形式
val fileRDD: RDD[String] = sc.textFile("input/word.txt")
// 将文件中的数据进行分词
// 扁平化处理:将一行数据进行拆分,形成一个一个的单词
val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))
// 转换数据结构 word => (word, 1)
val word2OneRDD: RDD[(String, Int)] = wordRDD.map((_,1))
// 将转换结构后的数据按照相同的单词进行分组聚合
val word2CountRDD: RDD[(String, Int)] = word2OneRDD.reduceByKey(_+_)
// 将数据聚合结果采集到内存中
val word2Count: Array[(String, Int)] = word2CountRDD.collect()
// 打印结果
word2Count.foreach(println)
//关闭 Spark 连接
sc.stop()

执行过程中,会产生大量的执行日志,如果为了能够更好的查看程序的执行结果,可以在项目的 resources 目录中创建 log4j.properties 文件,并添加日志配置信息:

log4j.rootCategory=ERROR, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Set the default spark-shell log level to ERROR. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=ERROR
# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=ERROR
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=ERROR
log4j.logger.org.apache.parquet=ERROR
log4j.logger.parquet=ERROR
# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in      # SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR

3.异常处理

如果本机操作系统是 Windows,在程序中使用了 Hadoop 相关的东西,比如写入文件到HDFS,则会遇到如下异常:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wwxySIS2-1659622620283)(Spark学习笔记.assets/image-20211118204424154.png)]
出现这个问题的原因,并不是程序的错误,而是 windows 系统用到了 hadoop 相关的服务,解决办法是通过配置关联到 windows 的系统依赖就可以了

在 IDEA 中配置 Run Configuration,添加 HADOOP_HOME 变量

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZZSu2ZgR-1659622620286)(Spark学习笔记.assets/image-20211118204730135.png)]

Spark是当今大数据领域最活跃、最热门、高效的大数据通用计算平台,是Apache软件基金会下所有开源项目中三开源项目之一。   在“One Stack to rule them all”理念的指引下,Spark基于RDD成功地构建起了大数据处理的一体化解决方案,将MapReduce、Streaming、SQL、Machine Learning、Graph Processing等大数据计算模型统一到一个技术堆栈中,开发者使用一致的API操作Spark中的所有功能;更为重要的是SparkSpark SQL、MLLib、GraphX、Spark Streaming等四子框架之间可以在内存中完美的无缝集成并可以互相操作彼此的数据,这不仅打造了Spark在当今大数据计算领域其他任何计算框架都无可匹敌的优势,更使得Spark正在加速成为大数据处理中心的计算平台。   《大数据Spark企业级实战》详细解析了企业级Spark开发所需的几乎所有技术内容,涵盖Spark的架构设计、Spark的集群搭建、Spark内核的解析、Spark SQL、MLLib、GraphX、Spark Streaming、Tachyon、SparkR、Spark多语言编程、Spark常见问题及调优等,并且结合Spark源码细致的解析了Spark内核和四子框架,最后在附录中提供了的Spark的开发语言Scala快速入门实战内容,学习完此书即可胜任绝多数的企业级Spark开发需要。   《大数据Spark企业级实战》从零起步,完全从企业处理大数据业务场景的角度出发,基于实战代码来组织内容,对于一名大数据爱好者来说,《大数据Spark企业级实战》内容可以帮助您一站式地完成从零起步到进行Spark企业级开发所需要的全部核心内容和实战需要。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页
评论 2

打赏作者

treesorshining

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值