深度学习AI美颜系列---人脸数据增强

深度学习AI美颜系列---人脸数据增强

在深度学习的训练中,我们经常会对较少的数据进行数据增强,一般而言,常用的数据增强包括如下几种:

1,旋转;

2,缩放;

3,镜像;

4,平移;

5,调色;

6,噪声;

而对于人脸数据的增强而言,尤其是做人脸检测和人脸关键点检测的项目,除了上述几种之外,本人给出一种新的方法:人脸变形技术。

这里以本人之前博客中所写的人脸变形为例:地址

以上述变形为例,这个变形中,有18个变形参数可以调节,理论上,对于同一张图,我们可以调出无数张不一样的样例图出来,因此,它可以用来随意增强数据。

为了增大差异化, 在上述人脸变形基础上,我们可以在叠加随机调色和随机噪声处理,这样,新的数据就出来了!

本人这里举例如下:

 

 

这种图中左边是原图,右边是根据本人的方法随意增强的四张,可以看到,这四张图与原图都存在较大的差异,用来做新数据是没有问题的。

本人使用1000张人脸样本,经过6倍扩充,也就是扩充到6000张,做了人脸关键点训练测试,效果如下:

 

 

上述就是使用人脸变形进行数据增强的方法,在缺少人脸样本的情况下,大家可以参考。

本人QQ1358009172,微信公众号:SF图像算法

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

发布了284 篇原创文章 · 获赞 411 · 访问量 114万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览