CodeForces 332C Students' Revenge

题目

题意

给出n对数对(a,b),A从其中选出p个数对,B再从中A给他的数对中挑出k个数对,B的方案为:首先满足k个数对的b之和最大,如果有多组方案,再考虑a之和最小。现在问A应该从中选出哪p个数对,使得在B的方案下得到的a之和最大,若有多组方案,再考虑b之和最大

题解

很容易想到贪心,但是题目的限制条件很多,所以坑也多,很容易满足一个条件又不满足另一个了。

1)在B的方案下,B首先会考虑不选b最小的那p-k个数对,所以先按照b从小到大排序,标记出这p-k个数对

2)那么A肯定会在剩下的数对中间选出a最大的那k个数对,按照a从大到小排序,因为他们的b都比较大,所以B肯定会选择这些数对,这样就满足了a之和最大的要求。

3)现在要在剩下的n-k个数中间选出不影响a之和的最大值且b最大的k-p个数对了。设第2)步中选出的数对的b的最小值为bmin,其实就是再选出p-k个b不大于bmin的数即可,因为之前按照b从小到大排过序了,只需记录一下第2)步中的输出的数对的最小下标就可以了。

坑:test 3:没有考虑a之和取到最大值有多种方案的话,选b之和最大的方案

        test 8:a和b全部为1的情况

        test 6:同test 3

        test 31和test 29:巨坑,我第3)步的方法是,再按b排一次序,但是这样的出来的数组可能和第1)步排出来的顺序不一样!!!

代码:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
#define maxn 100005

int n,p,k;
struct node
{
    int id,a,b,pos;
}o[maxn],tt[maxn];
bool cmp1(node x,node y)
{
    if (x.b==y.b) return x.a>y.a;
    return x.b<y.b;
};
bool cmp2(node x,node y)
{
    if (x.a==y.a) return x.b>y.b;
    return x.a>y.a;
};
int main()
{
    //freopen("/home/christinass/code/in.txt","r",stdin);
    scanf("%d%d%d",&n,&p,&k);
    for (int i=0;i<n;i++)
    {
        scanf("%d%d",&o[i].a,&o[i].b);
        o[i].id=i+1;
    }
    sort(o,o+n,cmp1);
    for (int i=0;i<n;i++)   o[i].pos=i;
    for (int i=0;i<n;i++)   tt[i].a=o[i].a,tt[i].b=o[i].b,tt[i].id=o[i].id;
    sort(o+p-k,o+n,cmp2);
    int t=n;
    for (int i=p-k;i<=p-1;i++)
    {
        printf("%d ",o[i].id);
        t=min(o[i].pos,t);
    }
    for (int i=1;i<=p-k;i++)
        printf("%d ",tt[t-i].id);
    printf("\n");
    return 0;
}


数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值