不定期备考小tips[数模][0] #20210529


本专栏主要作个人笔记,有相关知识预备的同学也可作复习用。不保证无相应基础的人士能看明白。
万一考试考到了,或者对你的学习有较大帮助,一键三连不过分吧(斜眼笑)

边值问题

S-L微分方程中两种内积的理解

一种内积: ( u , v ) = ∫ u v d x (u,v)=\int uvdx (u,v)=uvdx

S-L微分方程 L ϕ + λ σ ϕ = 0 \mathscr{L} \phi + \lambda\sigma \phi=0 Lϕ+λσϕ=0,其中 L ϕ = d d x ( p d ϕ d x ) + q ϕ , p > 0 , σ > 0 \mathscr{L}\phi=\frac d{dx} (p \frac {d\phi}{dx})+q\phi,p>0,\sigma>0 Lϕ=dxd(pdxdϕ)+qϕ,p>0,σ>0
此处定义内积 ( u , v ) = ∫ a b u v d x (u,v)=\int_a^buvdx (u,v)=abuvdx,那么直接计算,得到格林公式
( u , L v ) − ( v , L u ) = p ( u v ′ − v u ′ ) ∣ a b (u,\mathscr L v)-(v,\mathscr Lu)=p(uv'-vu')|^b_a (u,Lv)(v,Lu)=p(uvvu)ab
对于Regular S-L问题,加入边界条件
β 1 ϕ ( a ) + β 2 ϕ ′ ( a ) = 0 , β 3 ϕ ( a ) + β 4 ϕ ′ ( a ) = 0 \beta_1 \phi(a)+\beta_2 \phi'(a)=0,\beta_3 \phi(a) + \beta_4\phi'(a)=0 β1ϕ(a)+β2ϕ(a)=0,β3ϕ(a)+β4ϕ(a)=0
此时容易验证格林公式右侧变为0。则这时 L \mathscr L L是自伴算子(可以类比实对称矩阵相应的线性变换)。

另一种内积: ( u , v ) 1 = ∫ u σ v d x (u,v)_1 = \int u\sigma vdx (u,v)1=uσvdx

实际上,我们要求对 L ϕ + λ σ ϕ = 0 \mathscr L\phi +\lambda\sigma\phi=0 Lϕ+λσϕ=0的解进行考察,得到正交等性质。此处 ϕ 1 \phi_1 ϕ1 ϕ 2 \phi_2 ϕ2正交的定义是 ( ϕ 1 , ϕ 2 ) 1 : = ∫ a b ϕ 1 σ ϕ 2 d x = 0 (\phi_1,\phi_2)_1:=\int_a^b \phi_1\sigma\phi_2 dx=0 (ϕ1,ϕ2)1:=abϕ1σϕ2dx=0,内积定义和上一节所述不同。那么上一节仅仅证明了 ( ⋅ , ⋅ ) (\cdot,\cdot) (,)上的自伴性,又怎么能考察新的内积下性质呢?
这个问题可以类比线性代数中相应的问题。设 A A A实对称,则 A x = λ x Ax=\lambda x Ax=λx的各个解(特征向量)正交。此时设一个正定对角矩阵 D D D,考察 A x = λ D x Ax=\lambda Dx Ax=λDx的解。这等价于考察 S T A S ( S − 1 x ) = λ S T D S ( S − 1 x ) S^TAS(S^{-1}x)=\lambda S^TDS(S^{-1}x) STAS(S1x)=λSTDS(S1x)的解,其中 S S S是可逆矩阵(但不一定是正交矩阵)。
根据线性代数容易证明存在 S = D 1 T S=D_1 T S=D1T使得 S T D S ( = I ) , S T A S S^T DS(=I),S^T AS STDS(=I),STAS都是对角矩阵。其中 D 1 D_1 D1是正定对角矩阵, T T T是正交矩阵, D 1 D D 1 = I D_1 DD_1=I D1DD1=I
此时设两个解 x 1 , x 2 x_1,x_2 x1,x2满足 S T A S ( S − 1 x 1 ) = λ 1 ( S − 1 x 1 ) , S T A S ( S − 1 x 2 ) = λ 2 ( S − 1 x 2 ) , λ 1 ≠ λ 2 S^T AS(S^{-1}x_1)=\lambda_1(S^{-1}x_1),S^TAS(S^{-1}x_2)=\lambda_2(S^{-1}x_2),\lambda_1\neq \lambda_2 STAS(S1x1)=λ1(S1x1),STAS(S1x2)=λ2(S1x2),λ1=λ2,则根据 S T A S S^TAS STAS对角容易证明 ( S − 1 x 1 , S − 1 x 2 ) : = x 1 T ( S − 1 ) T S − 1 x 2 = 0 (S^{-1}x_1,S^{-1}x_2):=x_1^T(S^{-1})^TS^{-1}x_2=0 (S1x1,S1x2):=x1T(S1)TS1x2=0第一种内积
此时则 ( x 1 , x 2 ) 1 : = x 1 T D x 2 = x 1 T ( S − 1 ) T S T D S S − 1 x 2 = x 1 T ( S − 1 ) T T T D 1 T D D 1 T S − 1 x 2 = x 1 T ( S − 1 ) T S − 1 x 2 = 0 (x_1,x_2)_1:=x_1^T Dx_2=x_1^T(S^{-1})^TS^TDSS^{-1}x_2=x_1^T(S^{-1})^TT^TD_1^TDD_1TS^{-1}x_2=x_1^T(S^{-1})^TS^{-1}x_2=0 (x1,x2)1:=x1TDx2=x1T(S1)TSTDSS1x2=x1T(S1)TTTD1TDD1TS1x2=x1T(S1)TS1x2=0第二种内积
这可以帮助我们理解为什么 ( ⋅ , ⋅ ) (\cdot,\cdot) (,)这个旧内积上的自伴性可以决定 ( ⋅ , ⋅ ) 1 (\cdot,\cdot)_1 (,)1这个新内积对应的性质。

F.A.

F.A. (Fredholm Alternative, 弗雷德霍姆二择一)实际上是两次判断,三种情况,千万注意不是简单的”二选一“。此处的整个判断过程可以类比解线性方程组时的过程。

线性方程组

为了类比S-L微分方程,可以考察实数域上 A x = b Ax=b Ax=b,其中 A A A是对角元依次严格递增的对角矩阵或者和这样的对角矩阵正交相似的实对称矩阵。
注:为什么要考察这样的矩阵?因为Regular S-L特征值问题可以证明具有类似的性质。具体证明暂时不用管。
A A A可逆(等价于 A x = 0 Ax=0 Ax=0没有非平凡解)则方程有唯一解。
否则

  • A A A不可逆, A x = 0 Ax=0 Ax=0有非平凡解。
  • 根据 A A A正交标准形中对角元至多一个是0,得到 d i m K e r ( A ) = 1 dimKer(A)=1 dimKer(A)=1
  • 由实对称矩阵的性质, K e r ( A ) Ker(A) Ker(A) I m ( A ) Im(A) Im(A)正交。
    于是容易看出, b ∈ I m ( A ) b\in Im(A) bIm(A)等价于存在一个非零的 α ∈ K e r A \alpha\in KerA αKerA b b b正交。并且注意 b ∈ I m ( A ) b\in Im(A) bIm(A) ∃ β , A β = b \exists \beta, A\beta = b β,Aβ=b,此时 β + k α \beta+k\alpha β+kα对于一切 k k k都是 A x = b Ax=b Ax=b的解。
  • b ∉ I m ( A ) b\notin Im(A) b/Im(A)时, A x = b Ax=b Ax=b无解。

总之,当 A A A不可逆,如果存在非零 α ∈ K e r A \alpha\in KerA αKerA b b b正交,则 A x = b Ax=b Ax=b有无穷多解,否则 A x = b Ax=b Ax=b无解。(特别地,若 b = 0 b=0 b=0 A x = 0 Ax=0 Ax=0 A A A不可逆时总是有无穷多解)

S-L微分方程

L ϕ = 0 \mathscr L \phi =0 Lϕ=0没有非平凡解,则 L ϕ = f \mathscr L \phi = f Lϕ=f有唯一解。
否则,设 L ϕ = 0 \mathscr L\phi =0 Lϕ=0一个非平凡解 ϕ 0 \phi_0 ϕ0。此时:

  1. ( ϕ 0 , f ) = ∫ ϕ 0 f d x = 0 (\phi_0,f)=\int\phi_0 fdx=0 (ϕ0,f)=ϕ0fdx=0时,方程有无穷多解。
  2. ( ϕ 0 , f ) = ∫ ϕ 0 f d x ≠ 0 (\phi_0,f)=\int\phi_0 fdx\neq 0 (ϕ0,f)=ϕ0fdx=0时,方程无解。

无量纲化

换元的一般表示

比如有一些有量纲物理量 M , L , T M,L,T M,L,T,则一般的做法是设 M = M c m , L = L c l , T = T c t M=M_c m,L=L_cl,T=T_c t M=Mcm,L=Lcl,T=Tct,其中 M c M_c Mc是”特征“物理量, m = M M c m=\frac{M}{M_c} m=McM无量纲,是实际物理量和特征物理量的比。
而涉及导数时,由 x = X X c , t = T T c x=\frac{X}{X_c},t=\frac{T}{T_c} x=XcX,t=TcT容易知道 d x d t = T c X c d X d T \frac {dx}{dt}=\frac {T_c}{X_c} \frac {dX}{dT} dtdx=XcTcdTdX,显然看到 d x d t \frac {dx}{dt} dtdx无量纲。
涉及高阶导是一个坑。 d 2 x d t 2 = d d t d x d t = T c 2 X c d 2 X d T 2 \frac{d^2 x}{dt^2}=\frac d{dt} \frac{dx}{dt} = \frac{T_c^2}{X_c} \frac {d^2 X}{dT^2} dt2d2x=dtddtdx=XcTc2dT2d2X,分母 X c X_c Xc不是二次!

如何选择特征物理量

在有些物理量趋于0或趋于无穷时,如何适当选择物理量。

  • 无量纲化后的方程中的参数不能发散。
  • 不能出现”不定式“。(详细意义之后阐述)

例如 d 2 Y d T 2 = − 4 / 3 ⋅ π R 3 ρ G ( R + Y ) 2 \frac {d^2 Y}{dT^2}=- \frac{4/3\cdot \pi R^3 \rho G}{(R+Y)^2} dT2d2Y=(R+Y)24/3πR3ρG Y ′ ( 0 ) = − V 0 , Y ( 0 ) = 2 m ( 2 米 ) Y'(0)=-V_0,Y(0)=2m(2米) Y(0)=V0,Y(0)=2m(2),终态 Y f i n a l = 1 m Y_{final}=1m Yfinal=1m,求 R R R在极限情况( R R R趋于极限过程中 ρ , G , V 0 \rho,G,V_0 ρ,G,V0都是恒量)时,初态到终态运动时间。
首先,先设待定的 L c , T c L_c,T_c Lc,Tc为特征长度和特征时间,则
y ¨ = − 4 / 3 ⋅ π ρ G T c 2 ⋅ ( R / L c ) 3 y + ( R / L c ) 2 , y ˙ ( 0 ) = − V 0 T c / L c , y ( 0 ) = 2 m / L c \ddot y = -\frac{4/3\cdot \pi \rho GT_c^2\cdot (R/L_c)^3}{y+(R/L_c)^2},\dot y(0)=-V_0T_c/L_c,y(0)=2m/L_c y¨=y+(R/Lc)24/3πρGTc2(R/Lc)3,y˙(0)=V0Tc/Lc,y(0)=2m/Lc

  • 错误示例1:在 R → 0 R\to0 R0时,如果令 L c = R L_c=R Lc=R,那么 y ( 0 ) y(0) y(0)发散,这不可取。
  • 错误示例2:在 R → ∞ R\to\infty R时,如果令 L c = R L_c=R Lc=R,对于非零有限数 V 0 V_0 V0,如果取特征时间 T c T_c Tc使得 V 0 T c / L c = 1 V_0T_c/L_c=1 V0Tc/Lc=1那么 T c → ∞ T_c\to\infty Tc,无量纲化后初速 y ˙ ( 0 ) = − 1 \dot y(0)=-1 y˙(0)=1 y ( 0 ) = y f i n a l = 0 y(0)=y_{final}=0 y(0)=yfinal=0,则从初态到终态需要0个特征时间。
    0个特征时间,每个特征时间是无穷大,这是 0 ⋅ ∞ 0\cdot \infty 0不定式,不可取。
  • 参考示例1:在 R → ∞ R\to\infty R时,如果令 L c = R L_c=R Lc=R,对于非零有限数 V 0 V_0 V0,如果取特征时间 T c T_c Tc是非零有限数(不趋于无穷),那么 y ˙ ( 0 ) = 0 \dot y(0)=0 y˙(0)=0但是 y ¨ \ddot y y¨始终非零有限,这没有出现不定式,则可以确定地下结论:物体几乎瞬间从初态运动至终态。这符合实际物理情况。
  • 注1:虽然可以对物体运动所需时间下结论,但这时考察物体在任意时刻运动了多少距离就很困难,这是因为物体在所考察 Y ( 0 ) = 2 m , Y f i n a l = 1 m Y(0)=2m,Y_{final}=1m Y(0)=2m,Yfinal=1m初终态范围内,始终运动了0个特征长度,每个特征长度又是无穷大,那么对于长度出现了 0 ⋅ ∞ 0\cdot\infty 0不定式,考察长度相关的东西自然产生困难。
  • 正确示例1: L c = 1 m , 4 3 π ρ G T c 2 R / L c = 1 L_c=1m,\frac 43 \pi\rho GT_c^2R/L_c=1 Lc=1m,34πρGTc2R/Lc=1(可以看出 T c → 0 T_c\to0 Tc0),此时 y ¨ = − 1 , y ˙ = 0 , y ( 0 ) = 2 \ddot y=-1,\dot y=0,y(0)=2 y¨=1,y˙=0,y(0)=2,那么物体任意时刻运动了多少距离可以看出,并且初态到终态运动所需时间为 2 \sqrt 2 2 个特征时间,也就是0也符合实际情况!
  • 注2:这些结论的前提都是 ρ \rho ρ保持不变。如果质量 4 3 π ρ R 3 \frac 43 \pi \rho R^3 34πρR3保持不变,情况又有所不同

奇异极限

随手举例: x ˙ = y , α y ˙ = y − x \dot x = y,\alpha \dot y=y-x x˙=y,αy˙=yx
如果 α → 0 \alpha\to0 α0,方程变为 x ˙ = x = y \dot x = x=y x˙=x=y
初始时应该满足 x = y x=y x=y,否则矛盾。(奇异极限会要求初值条件
实际上,初始时如果 x > y x>y x>y,那么 y ˙ → ∞ \dot y\to \infty y˙

  • 如果 α < 0 \alpha<0 α<0,那么 y ˙ → + ∞ \dot y\to +\infty y˙+,也就是 y y y快速增大直至 x = y x=y x=y附近, y − x y-x yx α \alpha α同一量级。这是合理的奇异极限。
  • 如果 α > 0 \alpha>0 α>0,那么 y ˙ → − ∞ \dot y\to -\infty y˙,也就是 x − y x-y xy会越来越大,最终无法使得系统收敛到奇异极限!

渐近展开

主项平衡原理中“同阶”的理解

x 2 − x + 1 4 ϵ = 0 , ϵ → 0 x^2-x+\frac 14 \epsilon=0,\epsilon\to0 x2x+41ϵ=0,ϵ0
现在要把 x x x表示成 ϵ \epsilon ϵ的函数。且我们想考察这个函数 x ( ϵ ) x(\epsilon) x(ϵ)的“前若干项近似”。
x = x 0 δ 0 ( ϵ ) + x 1 δ 1 ( ϵ ) + ⋯ x=x_0\delta_0(\epsilon)+x_1\delta_1(\epsilon)+\cdots x=x0δ0(ϵ)+x1δ1(ϵ)+,且在 ϵ → 0 \epsilon\to0 ϵ0 δ 0 ≫ δ 1 ≫ ⋯ \delta_0\gg \delta_1\gg\cdots δ0δ1,对于代数方程,我们可以认为 x i x_i xi都是常数,和 ϵ \epsilon ϵ无关。不妨只考察首项 x 0 ≠ 0 , δ 0 ( ϵ ) ≠ 0 x_0\neq 0,\delta_0(\epsilon)\neq 0 x0=0,δ0(ϵ)=0的情况(非平凡解)。
考察 x ( ϵ ) x(\epsilon) x(ϵ)展开的首项 x 0 δ 0 x_0\delta_0 x0δ0,有 x 0 2 δ 0 2 − x 0 δ 0 + 1 4 ϵ = 0 x_0^2\delta_0^2-x_0\delta_0+\frac 14 \epsilon=0 x02δ02x0δ0+41ϵ=0.现在对前式的三项分类讨论。

  • 第一项是主项或第二项是主项,则 δ 0 = 0 \delta_0=0 δ0=0,舍去
  • 第三项是主项,无解,舍去
  • 三项都是主项,则现在整个方程是一个关于 x 0 x_0 x0的一元二次方程,系数和 ϵ \epsilon ϵ相关。为了这三项确实都有必要存在,他们应该是同阶的。不妨把同阶条件写成(之后解释) δ 0 2 = δ 0 = ϵ \delta_0^2=\delta_0=\epsilon δ02=δ0=ϵ,而这是不可能的。也就是这三项不可能在实际中同阶。
  • 第一项和第二项是主项,则整个方程 x 0 2 δ 0 2 − x 0 δ 0 = 0 x_0^2\delta_0^2-x_0\delta_0=0 x02δ02x0δ0=0,系数 δ 0 , δ 0 2 \delta_0,\delta_0^2 δ0,δ02都和 ϵ \epsilon ϵ相关。为了这两项都有必要存在,它们在 ϵ → 0 \epsilon\to0 ϵ0时同阶。故不妨设 δ 0 = 1 \delta_0=1 δ0=1。这时,被略去的第三项 1 4 ϵ \frac 14 \epsilon 41ϵ确实很小,所以这是合理的,则 x 0 2 − x 0 = 0 , x 0 ≠ 0 , x 0 = 1 x_0^2-x_0=0,x_0\neq 0,x_0=1 x02x0=0,x0=0,x0=1(注意舍去了 x 0 = 0 x_0=0 x0=0的情况!)
  • 对同阶条件的说明:由于 x 0 x_0 x0是非零有限数,所以各项系数同阶也就是各项同阶。至于 δ 0 \delta_0 δ0 δ 0 2 \delta_0^2 δ02同阶如何表示,你可以最简单地取 δ 0 = δ 0 2 \delta_0=\delta_0^2 δ0=δ02也可以设 l n ( δ 0 + 1 ) = 114514 δ 0 2 ln(\delta_0+1)=114514\delta_0^2 ln(δ0+1)=114514δ02,这都不会影响最后的结果。不信你看: x 0 2 δ 0 2 − x 0 δ 0 = 0 x_0^2\delta_0^2-x_0\delta_0=0 x02δ02x0δ0=0,解得 x 0 = 1 / δ 0 x_0=1/\delta_0 x0=1/δ0.回忆刚刚 x ( ϵ ) x(\epsilon) x(ϵ)的第一项 x 0 δ 0 = 1 ⋅ 1 = 1 x_0\delta_0=1\cdot 1=1 x0δ0=11=1,现在仍然有第一项 x 0 δ 0 = 1 x_0 \delta_0=1 x0δ0=1(注意 x 0 , δ 0 x_0,\delta_0 x0,δ0都是常数),确实对求 x ( ϵ ) x(\epsilon) x(ϵ)的渐近展开式没有影响!
  • 第一项和第三项是主项,则 δ 0 = ϵ \delta_0=\sqrt \epsilon δ0=ϵ ,第二项就太大了。
  • 第二项和第三项是主项,则 δ 0 = ϵ \delta_0=\epsilon δ0=ϵ,第一项 ϵ 2 x 0 2 \epsilon^2x_0^2 ϵ2x02确实很小。所以这也是合理的,且 − ϵ x 0 + 1 4 ϵ = 0 , x 0 = 1 4 , x ( ϵ ) ≈ 1 4 ϵ -\epsilon x_0+ \frac 14 \epsilon=0,x_0=\frac 14,x(\epsilon)\approx \frac 14 \epsilon ϵx0+41ϵ=0,x0=41,x(ϵ)41ϵ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值