TCC和LuaTCC安装使用

TCC和LuaTCC 专栏收录该内容
1 篇文章 0 订阅
一、TINY-C COMPILE(TCC)安装使用
download:
 http://bellard.org/tcc/

二、下载luatcc
download:
http://luatcc.luaforge.net/


tcc和luatcc安装流程:
vim configure
./configure
make
make test
make install

运行make test时候老报段错误,这是centos系统的selinux导致的,可先
关闭selinux,命令:setenforce 0 ,getenforce可查看selinux的当前
运行模式,关闭selinux后在安装tcc,就不会有问题了。

运行方式:
第一:  tcc -run hello.c
第二:  #!/usr/local/bin/tcc -run
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

<span> </span> <div> 以通俗简介的方式,从浅入深介绍SVM原理代码流程 让你从此不再惧怕SVM <br /> </div> <div> <p> <br /> </p> <p> <br /> </p> <p> <strong><span style="color:#E53333;">视频部分:</span></strong> </p> </div> 01_SVM之回顾梯度下降原理<br /> 02_SVM之回顾有约束的最优化问题<br /> 03_SVM之回顾有约束的最优化问题-KKT几何解释<br /> 04_SVM之回顾有约束的最优化问题-KKT数学解释<br /> 05_SVM之回顾距离公式感知器模型<br /> 06_SVM之感知器到SVM的引入<br /> 07_SVM之线性可分时损失函数的表示<br /> 08_SVM之线性可分时损失函数的求解-对w,b变量求偏导<br /> 09_SVM之线性可分时损失函数的求解-对β变量求解.<br /> 10_SVM之线性可分时算法整体流程<br /> 11_SVM之线性可分时案例<br /> 12_SVM之线性不可分时软间隔介绍<br /> 13_SVM之线性不可分时软间隔优化目标<br /> 14_SVM之线性不可分时软间隔算法整体流程<br /> 15_SVM之线性不可分时数据映射高维解决不可分问题<br /> 16_SVM之线性不可分时核函数引入<br /> 17_SVM之线性不可分时核函数讲解<br /> 18_SVM代码之线性可分时Logistic回归比较<br /> 19_SVM代码之基于鸢尾花数据多分类参数解释<br /> 20_SVM代码之基于鸢尾花数据网格搜索选择参数<br /> 21_SVM代码之不同分类器,核函数,C值的可视化比较<br /> <p> 22_SVM之回归方式SVR </p> <p> 23_SVM代码之SVR解决回归问题 </p> 24_SVM之SMO思想引入<br /> <p> 25_SVM之SMO案列讲解 </p> <p> <br /> </p> <p> <strong><span style="color:#E53333;">代码部分:</span></strong> </p> <p> <img src="https://img-bss.csdn.net/202005090648425294.png" alt="" /> </p> <p> <br /> </p> <p> <strong><span style="color:#E53333;">资料部分:</span></strong> </p> <p> <img src="https://img-bss.csdn.net/202005090649458459.png" alt="" /> </p>
<p style="background: white;"><span style="font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: Arial; color: black; mso-themecolor: text1;">人脸口罩佩戴检测<span lang="EN-US">(</span>识别<span lang="EN-US">)</span>是当前急需的应用,而<span lang="EN-US">YOLOv5</span>是目前流行的强悍的目标检测技术。本课程使用<span lang="EN-US">YOLOv5</span>实现人脸口罩佩戴的实时检测。课程提供超万张已标注人脸口罩数据集。训练后的<span lang="EN-US">YOLOv5</span>可对真实场景下人脸口罩佩戴进行高精度实时检测。</span></p> <p style="background: white;"><span style="font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: Arial; color: black; mso-themecolor: text1;">本课程会讲述本项目超万张人脸口罩数据集的制作方法,包括使用<span lang="EN-US">labelImg</span>“精灵标注助手”标注工具以及使用<span lang="EN-US">Python</span>代码对第三方数据集进行清洗。</span></p> <p style="background: white;"><span style="font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: Arial; color: black; mso-themecolor: text1;">本课程的<span lang="EN-US">YOLOv5</span>使用<span lang="EN-US">PyTorch</span>版的<span lang="EN-US">ultralytics/yolov5</span>,分别在<span lang="EN-US">Windows</span><span lang="EN-US">Ubuntu</span>系统上做人脸口罩佩戴检测的项目演示。具体项目过程包括:安装<span lang="EN-US">YOLOv5</span>、训练集测试集自动划分、修改配置文件、准备<span lang="EN-US">Weights&Biases(wandb)</span>训练可视化工具、训练网络模型、测试训练出的网络模型性能统计。</span></p> <p><img src="https://img-bss.csdnimg.cn/202105171502238347.jpg" alt="口罩数据集" /></p> <p><img src="https://img-bss.csdnimg.cn/202105171502526495.jpg" alt="图片检测效果" /></p> <p><img src="https://img-bss.csdnimg.cn/202105171503171409.jpg" alt="训练可视化" /></p> <p><img src="https://img-bss.csdnimg.cn/202105171503402341.jpg" alt="" /></p>
©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值