这次我们来分析SG组合游戏中的一种常见游戏模型:翻硬币游戏(Turning Turtles)。
老套路,上规则:
N 枚硬币排成一排,有的正面朝上,有的反面朝上。我们从左开始对硬币按 1 到 N 编号。
游戏者根据某些约束翻硬币(如:每次只能翻一或两枚,或者每次只能翻连续的几枚),但他所翻动的硬币中,最右边的必须是从正面翻到反面。
谁不能翻谁输。
现在问题就在于把问题转化为最原始的博弈论模型(nim游戏)
证明
有这样的一个定理
局面的 SG 值为局面中每个正面朝上的棋子单一存在时的 SG 值的异或和。
such as:HHTHTTHT(H为正面朝上,T为反面朝上)
SG(HHTHTTHT)=SG(H)^SG(TH)^SG(TTTH)^SG(TTTTTTH) 。
根据贾志豪神犇指引的方向,下面用数学归纳法来证明这个定理:
首先我们用一种类似二进制数的分数来表示游戏状态,对于任何一个正面朝上的硬币,我们设它的分值为 2^K,(它为此从左数第 K 枚硬币),例如HHTHTTHT<=>1+2+8+64=75,则可以得到,对于任意一个局面,它的所有后继局面的分数小于它。那么就以分数从小到大开始归纳,首先0和1不是问题,肯定满足,然后假设分值小于等于 K 的局面符合要求。那我们就需要证明分值为(K+1)的局面也符合要求。

本文探讨了翻硬币游戏的规则与转化成nim游戏的策略,通过数学归纳法证明了局面SG值的定理,并提供了相关模板题的链接。分析了游戏中最右边硬币翻转的重要性,揭示了游戏与nim游戏的等价性。
最低0.47元/天 解锁文章
4426

被折叠的 条评论
为什么被折叠?



