《 Classifying Malware Represented as Control Flow Graphs using Deep Graph Convolutional Neural Network》阅读记录
-
本文的动机(motivation)是什么?即,作者为什么要写这篇文章,为什么要提出这个方法?
在高投资回报率的推动下,恶意软件得到了迅猛的发展。传统的方法是基于机器学习的恶意软件分类方法,但是其适应性差,效率低。为了解决这一问题,本文提出一种利用深度图卷积神经网络嵌入CFGs(控制流图)中固有的结构信息进行高效恶意软件分类的新方法。可以高效的对恶意软件分类。
-
根据文章的描述,现有的其他方法是什么?有哪些缺陷?
现有的方法一:基于机器学习的恶意软件分类方法,其依赖于从原始二进制文件或反汇编代码中提取的手工特征(handcrafted features)
缺陷: 由于提取的这些特征比较多样化,在通用性和性能之间,若过分关注性能以获取分类的高精度,则会在不同系统中失去通用性;若过分关注通用性,就会降低分类器的辨别能力。
现有的方法二:从以控制流图(CFGs)表示的恶意软件程序中构建一个恶意软件分类系统, 利用图的相似性度量来训练恶意软件分类模型。( CFGs是一种常用于描述任何计算机程序控制流的数据结构 )
缺陷: 计算量过大
-
作者提出的方法是什么?有哪些特点?
作者提出的方法: 从以控制流图(CFGs)表示的恶意软件程序中构建一个恶意软件分类系统 , 基于图核的深度神经网路,来将恶意程式分类为控制流程图的深度图卷积神经网络(DGCNN) 。
特点:
- 较好的解决了通用性的问题(1. 从不同格式的恶意软件代码中都可以提取到CFG;2. CFG可用于导出在基于mls的恶意软件分类的现有工作中广泛使用的各种静态分析特征)
- 使用属性控制流图(ACFG),将CFG转化为易于机器学习的形式
- 精度与手工恶意软件特征应用的最新方法相当

被折叠的 条评论
为什么被折叠?



