YOLOv10改进 | 主干篇 | YOLOv10引入华为移动端模型Ghostnetv2替换Backbone

102 篇文章 64 订阅 ¥89.90 ¥99.00

1. Ghostnetv2介绍

1.1  摘要:轻量级卷积神经网络(CNN)专为移动设备上的应用而设计,具有更快的推理速度。 卷积运算只能捕获窗口区域的局部信息,阻碍了性能的进一步提升。 在卷积中引入self-attention可以很好地捕捉全局信息,但会很大程度上拖累实际速度。 在本文中,我们提出了一种硬件友好的注意力机制(称为 DFC 注意力),然后为移动应用程序提出了一种新的 GhostNetV2 架构。 所提出的DFC注意力是基于全连接层构建的,它不仅可以在通用硬件上快速执行,而且可以捕获远程像素之间的依赖性。 我们进一步回顾了之前 GhostNet 中的表达能力瓶颈,并建议通过 DFC 注意力增强廉价操作产生的扩展特征,以便 GhostNetV2 块可以同时聚合本地和远程信息。 大量实验证明了 GhostNetV2 相对于现有架构的优越性。 例如,它在 ImageNet 上以 167M FLOP 实现了 75.3% 的 top-1 准确率,在类似的计算成本下显着抑制了 GhostNetV1 (74.5%)。

官方论文地址:

YOLOv8的主干网络采用了CSP的思想,具体的改进是将YOLOv5中的C3模块替换成了C2f模块,其余部分与YOLOv5的主干网络相似。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [主干网络 | YOLOv8 更换主干网络之 VanillaNet |《华为方舟实验室最新成果》](https://blog.csdn.net/weixin_43694096/article/details/132002547)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [YOLOV8模型训练+部署(实战)](https://blog.csdn.net/caobin_cumt/article/details/131009067)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [YOLOV5的多主干网络(backbone)实现.zip](https://download.csdn.net/download/cuihao1995/83477139)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值