- 博客(15)
- 收藏
- 关注
原创 StopwatchCPU.java
这段代码定义了一个名为的类,它用于测量程序执行过程中所消耗的CPU时间。这个类主要利用了Java管理扩展(Java Management Extensions, JMX)中的接口来获取当前线程的CPU时间。
2024-10-23 20:40:42 388
原创 Stopwatch.java
这段代码是一个简单的Java程序,用于测量一个程序运行的时间(即所谓的“墙钟时间”)。这个类Stopwatch可以用来计算从创建Stopwatch实例到调用方法之间经过的时间。它使用了系统当前时间的毫秒数来实现计时功能。
2024-10-23 20:38:36 195
原创 `StdRandom.java`
StdRandom类提供了一套强大的工具,用于生成各种概率分布的随机数和洗牌操作。通过设置随机种子,可以确保结果的可重复性,这在测试和调试中非常有用。希望这些信息对您有所帮助!如果有任何具体问题或需要进一步的帮助,请随时告诉我。
2024-10-23 20:35:48 292
原创 大模型架构
目前的大语言模型大都基于Transformer 模型设计,Transformer有出色的并行性和容量,使得参数千亿的大模型成为可能。Transformer 是由多层的多头自注意力模块堆叠而成的神经网络模型。
2024-09-09 14:33:04 735
原创 Python课程设计报告
具体而言,我们将针对wine数据集,进行数据清洗、划分训练集与测试集、特征标准化、PCA降维,并采用多层感知机深度学习算法构建模型,最终通过定量指标评价模型性能。当各层神经元数量为32、16、8时,训练30个epochs,能达到89%的准确率;本次课程设计成功展示了使用深度学习方法解决葡萄酒分类问题的过程,通过PCA降维有效减少了计算复杂度,且深度神经网络模型在经过适当训练后,取得了优异的分类性能。:通过计算混淆矩阵和分类报告,发现模型在各类别上的精确率、召回率、F1分数均为1.0,显示了完美的分类能力。
2024-06-16 15:45:06 1244
原创 数据预处理实验报告
通过这个实验我巩固了统计知识,如正态分布、四分位数和异常值检测,还深入实践了数据处理、标准化和离散化的核心技术,提升了解决实际数据分析问题的能力。
2024-06-16 14:54:22 1294
原创 NLP文本表示
目前,语义表示的两种主要方式为基于符号的形式化系统和基于向量的语义表示。基于符号的语义表示有逻辑表达式和语义图等。基于向量的语义表示适用于神经网络的输入,能够方便地通过神经网络提取文本中的语义信息,并且可以直接用于神经网络的下游任务。缺点是,表示语义的向量难以被人类理解,缺乏可解释性。而基于符号的形式化系统的语义表示具有良好的可解释性,能够很好地被人类解读,并且可以方便地依托符号知识库进行研究,可以进行精确的逻辑推理。
2024-06-12 23:09:47 939
原创 纹理识别分类
通过深度学习中的卷积神经网络(CNN)对图像进行分类: 用于灰度图像的预处理。读取图像并转换为灰度,然后计算不同距离和角度下的灰度共生矩阵(GLCM)特征,包括最大概率、对比度、相关性、同质性、能量和熵。: 用于彩色图像的预处理。读取图像后分离各通道,计算每个通道的直方图,并进行归一化处理,使直方图之和为1。深度学习模型应用:理解了如何使用卷积神经网络(CNN)进行图像分类,从基本的模型搭建、训练、评估到超参数调优的全过程。CNN能够自动学习图像中的局部特征,适用于纹理识别这类任务。图像预处理技术。
2024-06-10 21:20:02 713
原创 NLP汉语分词
利用人民日报语料库或自己构建的语料库(30词以上)作为词典,任选五个句子,并基于正向最大匹配算法和最短路径法分别对这五个句子进行分词,并分别计算分词结果的正确率,召回率和F-测度值。输出句子,基于两种算法的分词结果和其对应的评价指标值汉语自动分词摘要:正向最大匹配算法:FMM算法:最少分词法(最短路径法) :通过这个实验,我对自然语言处理领域有了更深入的了解和认识。我意识到分词作为自然语言处理的一个基础任务,对于后续的文本分析、情感分析、机器翻译等任务都至关重要。这让我对自然语言处理领域产生了更浓厚的兴趣
2024-06-09 21:33:14 746
原创 Pandas编程作业实验报告(二)
我认识到了pandas库在数据处理和分析中的强大功能,如DataFrame的创建、数据的筛选、分组和聚合等。这些功能不仅提高了数据处理的效率,也有利于更深入地理解数据的内在规律和特征。pandas库可以方便地计算数据的各种特征,给出数据的各种指标。
2024-06-09 12:32:50 900
原创 灰度共生矩阵神经网络分类(文心一言)
基于图像的灰度共生矩阵(GLCM,Gray-Level Co-occurrence Matrix)来分类不同纹理的深度学习网络并不是常见的做法,因为灰度共生矩阵通常用于传统的图像纹理特征提取,而深度学习网络如卷积神经网络(CNN)则直接从原始图像中学习特征。
2024-06-06 19:21:35 604
原创 Pandas编程作业实验报告
通过这个实验,我深入掌握了Pandas库中DataFrame的创建、数据处理技巧、索引操作、连接与合并、以及数据导出等关键功能。我学会了如何处理缺失值、筛选特定条件的数据、重置索引、导出到Excel,并理解了不同类型的数据连接操作。
2024-06-04 22:55:35 1012 1
原创 数字图像处理:实验六:数学形态及图像压缩
在图像压缩实验中,通过调节不同的压缩质量参数,对三张图片进行了JPEG和JPEG2000格式的压缩处理。观察到随着压缩质量的减少,图片的清晰度逐渐下降,同时文件大小也在相应地减小。通过这个实验可以更直观地感受到不同压缩质量、不同压缩方式对图像质量和文件大小的影响。JPG基于离散余弦变换(DCT)的压缩技术。在较低的压缩比下,JPG的图像质量可能优于JPEG2000。但在高压缩比下,JPEG2000的压缩性能开始显现优势,其压缩率比JPG高约30%左右。
2024-06-01 20:16:57 1071 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人