大数据学习路线(包含全套视频教程)

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/tsyx/article/details/98878663

大数据学习路线


先看一个学习大数据要涉及到的一些技术,
第一点是Java
(Java SE,javaweb)

在大数据中,有个核心技术是Hadoop, Hadoop主要完成数据的存储与计算,技术包括HDFS和MapReduce, 而要编写HDFS和MapReduce,则需要用到Java语言。


第二点是 Linux(shell,高并发架构,lucene,solr)
大数据的底层是Linux系统,如果你不会Linux连个服务器都不了解,怎么能够学会大数据呢?所以如果想要学习大数据Linux是必须的。有一点需要注意的是只要掌握Linux的核心命令就可以了,关于运维方面的知识做到了解就好。

第三点是Hadoop(HDFS,Mapreduce,yarn,hive,hbase,sqoop,zookeeper,flume)

Hadoop是大数据的核心技术,包括HDFS,Mapreduce,yarn,hive,hbase,sqoop,zookeeper,flume等技术,只要把Hadoop学会了,上岗就业也就没有问题了,这部分是重点,需要大家好好掌握。


第四点是机器学习(R,mahout)

机器学习主要是包括一些算法,通过这些算法来完成数据的分析,比如线性回归、逻辑回归等,机器学习属于大数据的核心底层,如果机器学习学好了,可以做算法工程师。


第五点是Storm(Storm,kafka,redis)

Storm是做流失处理的,不是必须要学习的。

第六点是Spark(scala,spark,spark core,spark sql,spark streaming,spark mllib,spark graphx)

Spark中包括spark core,spark sql,spark streaming,spark mllib,spark graphx,Spark的底层语言是Scala,而Scala又是基于Java编写的。所以如果Java基础不错,学习Scala也比较快。想要取得高薪,Spark是需要学习的。

第七点是Python(python,spark python) 

Python中有很多的机器学习算法库,通过Python可以很容易的实现一些机器学习算法,如果要做算法工程师,Python是必须要隵的。

第八点是云计算平台(docker,kvm,openstack)

云计算了解一些就好。不需要深究。

下面我们再对各个技术做个说明:

一、Linux
lucene: 全文检索引擎的架构
solr: 基于lucene的全文搜索服务器,实现了可配置、可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面。

二、Hadoop
HDFS
: 分布式存储系统,包含NameNode,DataNode。NameNode:元数据,DataNode。DataNode:存数数据。
yarn: 可以理解为MapReduce的协调机制,本质就是Hadoop的处理分析机制,分为ResourceManager NodeManager。
MapReduce: 软件框架,编写程序。
Hive: 数据仓库 可以用SQL查询,可以运行Map/Reduce程序。用来计算趋势或者网站日志,不应用于实时查询,需要很长时间返回结果。
HBase: 数据库。非常适合用来做大数据的实时查询。Facebook用Hbase存储消息数据并进行消息实时的分析
ZooKeeper: 针对大型分布式的可靠性协调系统。Hadoop的分布式同步等靠Zookeeper实现,例如多个NameNode,active standby切换。
Sqoop: 数据库相互转移,关系型数据库和HDFS相互转移
Mahout: 可扩展的机器学习和数据挖掘库。用来做推荐挖掘,聚集,分类,频繁项集挖掘。
Chukwa: 开源收集系统,监视大型分布式系统,建立在HDFS和Map/Reduce框架之上。显示、监视、分析结果。
Ambari: 用于配置、管理和监视Hadoop集群,基于Web,界面友好。

二、Cloudera
Cloudera Manager: 管理 监控 诊断 集成
Cloudera CDH:(Cloudera's Distribution,including Apache Hadoop) Cloudera对Hadoop做了相应的改变,发行版本称为CDH。
Cloudera Flume: 日志收集系统,支持在日志系统中定制各类数据发送方,用来收集数据。
Cloudera Impala: 对存储在Apache Hadoop的HDFS,HBase的数据提供直接查询互动的SQL。
Cloudera hue: web管理器,包括hue ui,hui server,hui db。hue提供所有CDH组件的shell界面的接口,可以在hue编写mr。

三、机器学习/R
R
: 用于统计分析、绘图的语言和操作环境,目前有Hadoop-R
mahout: 提供可扩展的机器学习领域经典算法的实现,包括聚类、分类、推荐过滤、频繁子项挖掘等,且可通过Hadoop扩展到云中。

四、storm
Storm
: 分布式,容错的实时流式计算系统,可以用作实时分析,在线机器学习,信息流处理,连续性计算,分布式RPC,实时处理消息并更新数据库。
Kafka: 高吞吐量的分布式发布订阅消息系统,可以处理消费者规模的网站中的所有动作流数据(浏览,搜索等)。相对Hadoop的日志数据和离线分析,可以实现实时处理。目前通过Hadoop的并行加载机制来统一线上和离线的消息处理
Redis: 由c语言编写,支持网络、可基于内存亦可持久化的日志型、key-value型数据库。

五、Spark
Scala
: 一种类似java的完全面向对象的编程语言。

Spark: Spark是在Scala语言中实现的类似于Hadoop MapReduce的通用并行框架,除了Hadoop MapReduce所具有的优点,但不同于MapReduce的是job中间输出结果可以保存在内存中,从而不需要读写HDFS,因此Spark能更好的适用于数据挖掘与机器学习等需要迭代的MapReduce算法。可以和Hadoop文件系统并行运作,用过Mesos的第三方集群框架可以支持此行为。
Spark SQL: 作为Apache Spark大数据框架的一部分,可用于结构化数据处理并可以执行类似SQL的Spark数据查询
Spark Streaming: 一种构建在Spark上的实时计算框架,扩展了Spark处理大数据流式数据的能力。
Spark MLlib: MLlib是Spark是常用的机器学习算法的实现库,目前(2014.05)支持二元分类,回归,聚类以及协同过滤。同时也包括一个底层的梯度下降优化基础算法。MLlib以来jblas线性代数库,jblas本身以来远程的Fortran程序。

Spark GraphX: GraphX是Spark中用于图和图并行计算的API,可以在Spark之上提供一站式数据解决方案,可以方便且高效地完成图计算的一整套流水作业。

Fortran: 最早出现的计算机高级程序设计语言,广泛应用于科学和工程计算领域。

BLAS: 基础线性代数子程序库,拥有大量已经编写好的关于线性代数运算的程序。
LAPACK: 著名的公开软件,包含了求解科学与工程计算中最常见的数值线性代数问题,如求解线性方程组、线性最小二乘问题、特征值问题和奇异值问题等。
ATLAS: BLAS线性算法库的优化版本。
Spark Python: Spark是由scala语言编写的,但是为了推广和兼容,提供了java和python接口。

六、Python
Python
: 一种面向对象的、解释型计算机程序设计语言。

七、云计算平台
Docker
: 开源的应用容器引擎
kvm: (Keyboard Video Mouse)

openstack:  开源的云计算管理平台项目。

下面是一个大数据的技术结构图,大家需要在脑海中形成知识的总体架构。

 

大量大数据学习资料在这里可以找到:http://www.diyigaodu.com/bigdata/

 

展开阅读全文

没有更多推荐了,返回首页