自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

tszupup的博客

1.0 2.0 3.0 ...

  • 博客(12)
  • 资源 (1)
  • 收藏
  • 关注

原创 Pytorch保存和加载模型的两种方式

与Tensorflow、Keras等框架一样,Pytorch也提供了两种保存模型的方式,这两种方式都是通过调用pickle序列化方法实现的:只保存模型参数 保存完整模型下面我们依次对这两种方式进行实现,以以下多层感知机模型为例:def create_net(): net = nn.Sequential() net.add_module('linear1', nn.Linear(15, 20)) net.add_module('relu1', nn.ReLU())

2020-08-20 19:58:38 98

原创 torch.ones_like函数和torch.zero_like函数

torch.ones_like函数和torch.zero_like函数的基本功能是根据给定张量,生成与其形状相同的全1张量或全0张量,示例如下:input = torch.rand(2, 3)print(input)# 生成与input形状相同、元素全为1的张量a = torch.ones_like(input)print(a)# 生成与input形状相同、元素全为0的张量b = torch.zeros_like(input)print(b)效果如下:tensor([[0.08

2020-08-20 19:27:54 932 2

原创 Pytorch中的torch.where函数

首先我们看一下Pytorch中torch.where函数是怎样定义的:@overloaddef where(condition: Tensor) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...torch.where函数的功能如下:torch.where(condition, x, y):condition:判断条件x:若满足条件,则取x中元素y:若不满足条件,则取y中元素以具体实例看一下torch.where函数的效果:

2020-08-20 19:18:06 299

原创 使用torchkeras打印Pytorch模型结构和基本参数信息

在使用Pytorch构建神经网络模型后,我们需要看一下自己写的模型的网络结构,此时可以使用torchkeras模块中的summary函数实现该功能。以多层感知机为例,首先我们构建网络结构并打印该模型的初步信息,代码如下:import torchfrom torch import nnfrom torchkeras import summarydef create_net(): net = nn.Sequential() net.add_module('linear1', nn

2020-08-20 18:23:04 438

原创 pandas打印DataFrame的前几行、后几行样本和随机抽样

在使用pandas对结构化数据进行探索性分析时,我们经常需要打印几条样本出来看看数据读取和处理是否正确,除了用iloc函数以索引区间的方式读取,pandas为我们提供了更简单的head和tail函数,这两个函数的使用方法和效果如下。1、head函数pandas中的head函数的使用方法如下:import numpy as npimport pandas as pddf_data = pd.DataFrame(np.random.rand(10, 5))# 打印全体数据print(df

2020-08-20 17:59:23 1044

原创 使用python打印当前时间

在跑模型的时候,我们有时需要计算模型运行时间,此时我们需要获取到模型开始运行的时间以及模型结束运行的时间,以二者的差值作为模型的总运行时间。在python语言中,我们可以使用以下两种常用的方式获取当前时间。1、使用time模块代码如下:# 打印时间戳print(time.time()) # 打印自从1970年1月1日午夜(历元)经过了多长时间,以秒为单位# 打印本地时间print(time.localtime(time.time())) # 打印本地时间# 打印格式

2020-08-20 17:33:55 417

原创 论文阅读笔记:From Zero-Shot Learning to Cold-Start Recommendation

论文:From Zero-Shot Learning to Cold-Start Recommendation / 从零样本学习到冷启动推荐作者:Jingjing Li, Mengmeng Jing, Ke Lu, Lei Zhu, Yang Yang, Zi Huang发表刊物:AAAI发表年度:2019下载地址:https://arxiv.org/abs/1906.08511Abstract零样本学习和冷启动推荐分别是计算机视觉和推荐系统中具有挑战性的研究问题,它们一般来各自的社区中被独

2020-08-17 19:26:28 116

原创 python返回列表中特定元素对应的索引

在使用列表这一数据结构进行数据分析时,我们会经常遇到需要返回列表中特定元素对应的所有索引的情况。我们可能会首先想到可以使用index函数返回元素索引,看一下效果:a = [1, 2, 3, 4, 2, 1]print(a.index(2))结果为:1可以看到,使用index函数返回的只有一个索引,而列表a中有两个2,应该返回两个索引才对,我们看一下index函数具体细节:可以看到,index函数只返回命中元素的第一个索引,而且该函数也没有参数让我们实现返回多个索引的效果。我们进

2020-08-14 10:46:27 115

原创 python对列表元素排序并返回元素索引序列

在信息检索或top-n推荐中,我们会为用户推荐一个有序推荐列表,这里的“有序”体现在列表中前面的产品相比于列表后面的产品被算法预测为更容易被用户选择,这要求我们按每个产品出现的概率对产品进行排序。可以参考以下示例:# 按列表a中元素的值进行排序,并返回元素对应索引序列a = [1, 3, 4, 5, 2, 7, 9]print('a:', a)sorted_id = sorted(range(len(a)), key=lambda k: a[k], reverse=True)print('元素

2020-08-11 20:33:10 543

原创 python批量计算cosine distance

我们在做推荐或者信息检索任务时经常需要比较项目嵌入和项目嵌入之间或者用户嵌入和项目嵌入之间相似度,进而进行推荐。余弦相似度的计算公式如下:余弦相似度cosine similarity和余弦距离cosine distance是相似度度量中常用的两个指标,我们可以用sklearn.metrics.pairwise下的cosine_similarity和paired_distances函数分别计算两个向量之间的余弦相似度和余弦距离,效果如下:import numpy as npfrom sklea

2020-08-11 19:35:04 462

原创 python计算mAP

mAP(mean Average Precision)是信息检索和推荐系统领域评估算法性能的重要指标。If you have an algorithm that is returning a ranked ordering of items, each item is either hit or miss (like relevant vs. irrelevant search results) and items further down in the list are less likely to

2020-08-07 19:44:22 255

原创 python计算precision@k、recall@k和f1_score@k

sklearn.metrics中的评估函数只能对同一样本的单个预测结果进行评估,如下所示:from sklearn.metrics import classification_reporty_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]y_pred = [0, 2, 4, 5, 2, 3, 1, 1, 4, 2]print(classification_report(y_true, y_pred))而我们经常会遇到需要对同一样本的top-k个预测结果进行

2020-08-06 20:58:15 501

用户画像及其在推荐系统中的应用.pdf

整理的用户画像的相关知识及其在推荐系统中的应用,包括用户画像的基本概念、用户画像的维度、如何构建用户画像以及用户画像在推荐系统中的应用。下载者需要对推荐系统和机器学习有所了解。

2019-12-31

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除