CF1900D Small GCD 题解

CF1900D Small GCD 题解

原题链接

题意

一个序列求所有三元组中两个较小的值的 gcd ⁡ \gcd gcd 之和。
∑ i = 1 n ∑ j = i + 1 n ∑ k = j + 1 n f ( a i , a j , a k ) \sum_{i=1}^{n}\sum_{j=i+1}^{n}\sum_{k=j+1}^{n}f(a_i,a_j,a_k) i=1nj=i+1nk=j+1nf(ai,aj,ak)
f ( a i , a j , a k ) f(a_i,a_j,a_k) f(ai,aj,ak) 表示取其中两个较小值的 gcd ⁡ \gcd gcd

思路

首先,朴素的做法就是直接按照给出的公式求解,时间复杂度大约为 O ( n 3 log ⁡ n ) O(n^3\log n) O(n3logn),显然是不行的,并且通常带有求和公式的题目都不会直接模拟计算。

由题可知三元组是不重复的(与三元组内元素出现的顺序无关),并且只需要用三元组中两个较小的值,从小到大排序是没有问题的。并且可以想到对于每一个三元组枚举中间数,对于中间数 a j a_j aj 只需要将所有的 i < j i<j i<j a i a_i ai a j a_j aj 求一个 gcd ⁡ \gcd gcd 即可,并且注意,因为三元组中的最大值是可以随意选取的,这个值需要乘一个 ( n − j ) (n-j) (nj)
如下:
∑ i = 1 n ∑ j = 1 i − 1 gcd ⁡ ( a i , a j ) × ( n − i ) \sum_{i=1}^{n}\sum_{j=1}^{i-1}\gcd(a_i,a_j)\times(n-i) i=1nj=1i1gcd(ai,aj)×(ni)
时间复杂度顺利优化成 O ( n 2 log ⁡ n ) O(n^2\log n) O(n2logn)

但是这个时间复杂度还是远远不够的。但是还能怎么优化呢?
需要用到一个数论知识:

欧拉反演

欧拉函数:对正整数 n n n,欧拉函数是少于或等于 n n n 的数中与 n n n 互质的数的数目,用 ϕ ( x ) \phi(x) ϕ(x)来表示 x x x 的欧拉函数值。
欧拉函数如有不懂戳这里

欧拉反演是欧拉函数的一条性质,即:
n = ∑ d ∣ n ϕ ( d ) n=\sum_{d|n}\phi(d) n=dnϕ(d)
这里简单证明一下:
n = ∑ d ∣ n ∑ j = 1 n gcd ⁡ ( j , n ) = = d = ∑ d ∣ n ∑ j = 1 n d gcd ⁡ ( j , n d ) = = 1 = ∑ d ∣ n ϕ ( n d ) = ∑ d ∣ n ϕ ( d ) \begin{aligned} n&=\sum_{d|n}\sum_{j=1}^{n}\gcd(j,n)==d \\ &=\sum_{d|n}\sum_{j=1}^{\frac{n}{d}}\gcd(j,\frac{n}{d})==1 \\ &=\sum_{d|n}\phi(\frac{n}{d}) \\ &=\sum_{d|n}\phi(d) \\ \end{aligned} n=dnj=1ngcd(j,n)==d=dnj=1dngcd(j,dn)==1=dnϕ(dn)=dnϕ(d)

有了这条性质,可以应用:
一个较为简单的:
gcd ⁡ ( i , j ) = ∑ d ∣ gcd ⁡ ( i , j ) ϕ ( d ) = ∑ d ∣ i ∑ d ∣ j ϕ ( d ) \begin{aligned} \gcd(i,j)=\sum_{d|\gcd(i,j)}\phi(d) =\sum_{d|i} \sum_{d|j} \phi(d)\\ \end{aligned} gcd(i,j)=dgcd(i,j)ϕ(d)=didjϕ(d)
所以:
∑ i = 1 n gcd ⁡ ( i , n ) = ∑ i = 1 n ∑ d ∣ i ∑ d ∣ n ϕ ( d ) = ∑ d ∣ n ∑ i = 1 n ∑ d ∣ i ϕ ( d ) = ∑ d ∣ n n d ϕ ( d ) \begin{aligned} \sum_{i=1}^n\gcd(i,n)&=\sum_{i=1}^n\sum_{d|i} \sum_{d|n} \phi(d) \\ &=\sum_{d|n} \sum_{i=1}^n\sum_{d|i} \phi(d) \\ &=\sum_{d|n} \frac{n}{d}\phi(d)\\ \end{aligned} i=1ngcd(i,n)=i=1ndidnϕ(d)=dni=1ndiϕ(d)=dndnϕ(d)

将其应用到本题:

∑ i = 1 n ∑ j = 1 i − 1 gcd ⁡ ( a i , a j ) ( n − i ) = ∑ i = 1 n ∑ j = 1 i − 1 ∑ d ∣ a i , d ∣ a j ϕ ( d ) ( n − i ) = ∑ i = 1 n ( n − i ) ∑ j = 1 i − 1 ∑ d ∣ a i ϕ ( d ) [ d ∣ a j ] = ∑ i = 1 n ( n − i ) ∑ d ∣ a i ϕ ( d ) ∑ j = 1 i − 1 [ d ∣ a j ] = ∑ i = 1 n ( n − i ) ∑ d ∣ a i ϕ ( d ) c n t i − 1 , d \begin{aligned} &\sum_{i = 1}^{n} \sum_{j = 1}^{i - 1} \gcd(a_i, a_j) (n - i)\\ &= \sum_{i = 1}^{n} \sum_{j = 1}^{i - 1} \sum_{d | a_i, d | a_j} \phi(d)(n - i)\\ &= \sum_{i = 1}^{n} (n - i) \sum_{j = 1}^{i - 1} \sum_{d | a_i} \phi(d)[d | a_j] \\ &= \sum_{i = 1}^{n} (n - i) \sum_{d | a_i} \phi(d) \sum_{j = 1}^{i - 1} [d | a_j] \\ &= \sum_{i = 1}^{n} (n - i) \sum_{d | a_i} \phi(d) cnt_{i - 1, d} \end{aligned} i=1nj=1i1gcd(ai,aj)(ni)=i=1nj=1i1dai,dajϕ(d)(ni)=i=1n(ni)j=1i1daiϕ(d)[daj]=i=1n(ni)daiϕ(d)j=1i1[daj]=i=1n(ni)daiϕ(d)cnti1,d

对于欧拉函数,用一个欧拉筛就可以解决了。

最终时间复杂度: O ( n n ) O(n\sqrt{n}) O(nn )

code

#include<bits/stdc++.h>
using namespace std;
#define ll long long

const int N=8e4+10,Maxn=1e5+10;
int t,n,cnt=0;
ll a[N],prime[Maxn],phi[Maxn],sum[Maxn];
ll ans=0;
bool f[Maxn];

void phii(int x){//预处理欧拉函数
	for(int i=2;i<=x;i++) f[i]=true;
	f[1]=f[0]=false;
	phi[1]=1;
	for(int i=2;i<=x;i++){
		if(f[i]) prime[++cnt]=i,phi[i]=i-1;
		for(int j=1;j<=cnt&&i*prime[j]<=x;j++){
			f[i*prime[j]]=false;
			if(i%prime[j]==0){
				phi[i*prime[j]]=phi[i]*prime[j];
				break;
			}
			else phi[i*prime[j]]=phi[i]*(prime[j]-1);
		}
	}
	return ;
}

int main(){
	phii(1e5);
	scanf("%d",&t);
	while(t--){
		memset(sum,0,sizeof(sum));
		scanf("%d",&n);
		for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
		sort(a+1,a+1+n);
		for(int i=1;i<=n;i++){
			for(int j=1;j*j<=a[i];j++){//枚举a[i]的所有因数
				if(a[i]%j==0){
					ans+=sum[j]*phi[j]*(n-i);
					sum[j]++;//注意这里是先计算再修改 
					if(j*j!=a[i]){
						ans+=sum[a[i]/j]*phi[a[i]/j]*(n-i);
						sum[a[i]/j]++;
					}
				}
			}
		}
		printf("%lld\n",ans);
		ans=0;
	}
	return 0;
}

这个数学证明应该难度不算很高,读者有问题可以在评论区提出。看到了尽量回答。

完结撒花!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值