1什么时候进行时间序列处理?
发现进行预测时,与属性没有多大关系,只和时间有关,这时候就不能利用机器学习模型来解决,要用时间序列处理
这里用的python语言,使用一种统计模型ARIMA
2ARIMA
Auto-Regressive Integrated Moving Averages
该模型需要三个参数 p d q
d一般在1和2之间选择,不做太多讨论
p:number of AR terms. AR terms 是指依赖变量的延迟。

本文介绍了如何使用Python和ARIMA模型进行时间序列处理。ARIMA模型中的p和q参数分别代表AR项和MA项的数量,acf和pacf用于衡量时间序列的关联性。在应用ARIMA之前,需要通过Dicky-Fuller Test检验数据的平稳性,如果数据不平稳,还需要进行相应处理。最后,文章提供了代码和数据示例。
最低0.47元/天 解锁文章
8万+

被折叠的 条评论
为什么被折叠?



