CNN卷积神经网络的网络结构和学习原理

本文详细介绍了CNN网络结构,包括输入层、卷积层、池化层和全连接层,强调卷积和池化的功能及作用。通过实例解释了卷积过程,以及为何进行padding和池化操作。最后,探讨了如何利用CNN进行图像分类,并提供了CNN+TensorFlow的实践案例链接。
摘要由CSDN通过智能技术生成

卷积神经网络,主要是对图片进行处理。假如需要对一个1000*1000的图片进行分类,如果用传统的机器学习或者DNN,如要输入1000000个特征,当然也可以提前用一些方法进行降维,但是处理还是不方便。有人提出,人类对于图像的判断,也是通过对图像进行多层抽象完成。于是就提出了卷积的概念。

 

 

图中是一个图形识别的CNN模型。可以看出最左边的船的图像就是我们的输入层,计算机理解为输入若干个矩阵,这点和DNN基本相同。接着是卷积层(Convolution Layer),这个是CNN特有的。卷积层的激活函数使用的是ReLU(x)=max(0,x)。在卷积层后面是池化层(Pooling layer),池化层没有激活函数。

卷积层+池化层的组合可以在隐藏层出现很多次,上图中出现两次。而实际上这个次数是根据模型的需要而来的。当然我们也可以灵活使用使用卷积层+卷积层,或者卷积层+卷积层+池化层的组合,这些在构建模型的时候没有限制。但是最常见的CNN都是若干卷积层+池化层的组合,如上图中的CNN结构。

在若干卷积层+池化层后面是全连接层(Fully Connected Layer, 简

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值