Spark mllib包含的分类模型有:逻辑回归,决策树,随机森林,梯度提升树,多层感知机,线性SVM,朴素贝叶斯。
回归模型有:线性回归,决策树回归,随机森林回归,梯度提升树回归,生存回归,保序回归。
在spark mllib库外,还有一个比较常见的模型:KNN。
决策树==================
非线性分类模型
https://blog.csdn.net/tuntunwang/article/details/50587518
梯度提升树=================
梯度提升树(GBTs)包含两类:梯度提升决策树(GBDT&#x

本文介绍了Spark MLlib中常见的机器学习分类模型,包括逻辑回归、决策树、随机森林、梯度提升树、多层感知机、线性SVM和朴素贝叶斯。还提及了回归模型如线性回归和KNN等。文中详细阐述了各模型的工作原理,如决策树的非线性分类能力,梯度提升树的学习残差策略,以及多层感知机的神经网络结构。此外,还讨论了逻辑回归和线性回归的区别,并介绍了KNN的最近邻居投票机制。
最低0.47元/天 解锁文章
14万+

被折叠的 条评论
为什么被折叠?



