常见的机器学习分类模型

本文介绍了Spark MLlib中常见的机器学习分类模型,包括逻辑回归、决策树、随机森林、梯度提升树、多层感知机、线性SVM和朴素贝叶斯。还提及了回归模型如线性回归和KNN等。文中详细阐述了各模型的工作原理,如决策树的非线性分类能力,梯度提升树的学习残差策略,以及多层感知机的神经网络结构。此外,还讨论了逻辑回归和线性回归的区别,并介绍了KNN的最近邻居投票机制。
摘要由CSDN通过智能技术生成

Spark mllib包含的分类模型有:逻辑回归,决策树,随机森林,梯度提升树,多层感知机,线性SVM,朴素贝叶斯。

回归模型有:线性回归,决策树回归,随机森林回归,梯度提升树回归,生存回归,保序回归。

在spark mllib库外,还有一个比较常见的模型:KNN。

 

决策树==================

非线性分类模型

https://blog.csdn.net/tuntunwang/article/details/50587518

 

梯度提升树=================

梯度提升树(GBTs)包含两类:梯度提升决策树(GBDT&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值