归一化 正则化 标准化

本文介绍了数据预处理中的归一化和正则化技术。标准化包括standardScaler、minmaxScaler和MaxAbsScaler,用于消除特征间的尺度差异,加速模型训练过程。正则化主要通过调整向量的一阶或无穷阶范数,防止过拟合,常见的正则项有0范式、1范式和2范式。正则化通过添加惩罚因子降低参数大小,避免模型过度复杂,提高泛化能力。
摘要由CSDN通过智能技术生成

标准化是对列进行归一化操作,主要包括:

standardScaler: 将特征标准化为单位标准差或是0均值,或是0均值单位标准差。

minmaxScaler:将特征的值缩放到[0,1]范围。x=(x-min)/(max-min)

MaxAbsScaler:将特征的值缩放到[-1,1]范围。x=x / max|x|

 

为什么要进行标准化操作?

在现实生活中,一个目标变量(y)可以认为是由多个特征变量(x)影响和控制的,那么这些特征变量的量纲和数值的量级就会不一样,比如x1 = 10000,x2 = 1,x3 = 0.5 可以很明显的看出特征x1和x2、x3存在量纲的差距;x1对目标变量的影响程度将会比x2、x3对目标变量的影响程度要大(可以这样认为目标变量由x1掌控,x2,x3影响较小,一旦x1的值出现问题,将直接的影响到目标变量的预测,把目标变量的预测值由x1独揽大权,会存在高风险的预测)而通过标准化处理,可以使得不同的特征变量具有相同的尺度(也就是说将特征的值控制在某个范围内),这样目标变量就可以由多个相同尺寸的特征变量进行控制,这样,在使用梯度下降法学习参数的时候,不同特征对参数的影响程度就一样了。比如在训练神经网络的过程中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值