42,一点都不乏味

原文链接:https://mp.weixin.qq.com/s/fUIbFZNjGC3uKqV4LJBQ7w#rd


640?wx_fmt=png

近日,数学家终于谱写出了 42 的三个整数的立方和。这解决了一个已经被考虑了 65 年的问题,42 已经不是最孤单的数字了。

其实,42一点都不乏味!

好吧,虽然这早已不是秘密了。

这个数在道格拉斯·亚当斯的《银河系搭车客指南》里很重要,它是“关于生命、宇宙以及一切之终极问题”的答案。这 一发现马上产生了一个新问题:什么才是真正的关于生命、宇宙和所有一切之终极问题?亚当斯说,他选择这个数是因为,他快速地问了一圈朋友们,大家都认为 640? 是最乏味的。

在此,我想保护 640? 不受这样的诽谤。就数学意义而言640? 毫无疑问无法和 640?640?甚至是 640? 相提并论。然而,它也并不是完全无趣的640? 是普洛尼克数、卡塔兰数,也是最小的魔方幻方常数。当然,它还有一些其他特点。

▌普洛尼克数

所谓普洛尼克数(也叫长方形数、矩形数或 heteromecic 数)是指两个连续整数的积,因此它的形式是 640? 。当 640? 时,我们可以得到 640?由于第 640? 个三角形数是 640? ,所以普洛尼克数是三角形数的 640? 倍。它还是前 640? 个偶数之和。数量是普洛尼克数的点可以排列成一个矩形,这种矩形的一条边比另一条边大 640?图 171)。


640?

图 171 前 6 个普洛尼克数。阴影部分表示它们为什么是三角形数的 2 倍

这里有一个关于高斯的故事,在他还很年轻的时候,被老师要求完成一个一般形式的问题

640?

很快发现,如果相同的和式以递减的顺序写出来,即

640?

其相应的数对之和都等640?因为有 640? 对这样的数对,所以它们的总和为 640?这是一个普洛尼克数。老师提出的问题的答案是这个数的一半,即 640?然而,我们实际上并不知道高斯的老师在课上提出的问题到底是什么,它有可能更难。如果是这样的话,那么高斯就更聪明了。

▌第 640? 个卡塔兰数
卡塔兰数出现在许多不同的组合问题里,所谓组合问题是指对各种数学任务的完成方法进行计数。这个问题可以追溯到欧拉,他计数了一个多边形可以分割成多少种顶点相接的三角形。后来,欧仁·卡塔兰发现了这类问题和代数之间的联系:在加法或乘法算式里插入括号的方法有多少种。我很快就会做解释,但首先让我先介绍一下这类数。
对 n = 0, 1, 2,…而言,前几个卡塔兰数 Cn 

640?

利用阶乘可以得到如下公式:

640?

当 640? 比较大时,它还有一个很好的近似公式:
640?

这又是一个在看似和圆或球体无关的问题里出现了 640? 的例子。

640? 是把正 640? 边形分割成三角形的不同方法的数量(图 172)。

640?

图 172 把六边形分割成三角形的 14 种方法

它也是生成有 640? 片叶子的二叉树的数量。二叉树源于一个根节点, 然后从这个节点开始向两边分枝。每个分枝都以点或叶子结束。每个点必须继续分出两枝(图 173)。


640?图 173 5 棵有 4 片叶子二叉树

如果你觉得这个想法有点难懂,那么它和代数还有一个更直接的联系——计算在加法或乘法算式中插入括号的方法的总数,例如对 abcd 而言, 有C5 种可能:

640?

一般而言640? 个符号有 640? 种插入括号的方法。为了搞明白其中的联系, 我们可以把这些符号顺次填在树的叶子上。如果一对叶子有相同的节点,

那么就插入括号。如图 174 所示,我们先从左往右把 640? 片叶子标上 640?640?640?640?然后,从下往上在连接 640? 和 640? 的节点旁标记 640?它上面的节点连接了 640? 和标记为 640?的节点,因此新的节点对应于 640?最后,顶上的节点连接了 640? 和 640?因此,它是 640?


640?

图 174 把二叉有根树转化成代数

许多其他的组合问题也会出现卡塔兰数;以上是最容易描述的一小部分。

▌魔方

一个 640? 魔方的幻方常数是 640?这样的魔方包含了 640? 每个数各一次,平行于棱边的每行或经过中心的对角线中的数之和是相等的——这个和被称为幻方常数。所有 640? 个数之和是 640?这些数可以被分成 640?组不相交的三元组,而每个三元组相加后可以得到幻方常数,因此幻方常数必须是 640?

这样的排列是存在的,图 175 就是一个例子。


640?

图 175 640? 魔方的连续三层

▌其他特点

1. 640? 是分拆 640? 的不同方法的数量,拆分需按自然顺序把数写成整数之和。
2. 640? 是第二个楔形数,所谓楔形数是指 640? 个不同质数之积。在这里640?
3. 640? 是第三个 640? 边形数,它和三角形数类似,但基于的是正 640? 边形。
4. 640? 是超级多重完全数:除数之和的除数之和(包括 640?,这样重复 640? 次之后的数字等于自己。
5.在一段时期内640? 是已知最好的 640? 的无理性度量值,即精确量化 640? 有多“无理”的一种方法。特别是库尔特·马勒在 1953 年证明了对任意有理数p/q 而言,有
640?
不过,V. 卡·萨利科夫在 2008 年将 640? 修订成 640?因此 640? 在这里又变回了无趣。
6.640? 是第三个本原伪完全数。所谓本原伪完全数需满足条件:
640?
其中 640? 是可以整除 640? 的不同质数。前几个本原伪完全数分别是
640?
7. 640? 是这样的一种 640?存在小于 640? 的 640? 个不同正整数 640?640?640?640? 且 640?640? 和 640? 全都可以整除 640?它是仅有的已知具有这种性质的数,但人们尚不知道是否还存在其他这样的数。
8.640? 是被证明的香肠猜想里的最小维度(见第 56 章)。不过,人们猜想命题在大于等于 640? 维时都成立,因此640? 在这里的意义依赖于当下掌握的知识。
看到了吗? 640? 一点都不乏味!
更多 42 的故事,请关注《不可思议的数》。

640?wx_fmt=png

斯图尔特教授继

《数学万花筒》之后的又一力作
640?wx_fmt=png

作者:Ian Stewart

译者:何生 

书中介绍了各种各样的数:从常见的自然数 0 至 10 到负数,从“简单”的有理数到复杂多变的有理数和无理数;从已知最大的质数到最小的无穷大。每个数都有它自己的故事,而围绕着这些数,作者不但讲述了每个数背后的历史,更拓展出众多有趣的数学问题,让这些数成为带读者进入神奇数学世界的“引路人”。

本文转载自:遇见数学

☟☟☟ 更多数学好书

文章创建于: 2019-09-11 01:19:29
展开阅读全文

人工智能一点都不可怕!

02-26

马斯克警告说人工智能技术比朝鲜更危险。霍金说:人工智能可能是人类文明史上最糟糕的东西。rnrnrnrn对于人工智能技术,苹果联合创始人史蒂夫·沃兹尼亚克(Steve Wozniak)也曾持相似观点,但他如今却不再这样认为了。据美国华人网报道,[b]在斯德哥尔摩举行的北欧商业论坛上,沃兹尼亚克表示他不再担忧了。rn[/b] rnrnrn沃兹尼亚克表示:“我觉得,人工智能技术一点儿都不可怕。这是因为,在认知能力方面,机器甚至远远落后于幼儿。rn rnrn“对于机器来说,若想超越人类,就必须做到人类社会发展的每一步——创建我们在生活中所需要的一切产品和东西,做到丰衣足食。改变基础设施将需要数百年时间。”他解释说。 rn rn rn据美国华人网两年前的报道显示,[b]沃兹尼亚克过去经常会在公共场合表示,机器将会变得非常邪恶,它们之间能够进行对话,能够进行独立思考[/b]。 rn rnrn而最终他对人工智能的看法又回到了原点,认为人工智能不会威胁人类。最后,他认为人类大脑要比计算机强大的多,也不再像马斯克和霍金那样担心人工智能会给人类带来巨大的威胁。rn rnrn[b]然而,近日,26位人工智能专家在一份报告中警告说,人类尚未对人工智能的邪恶潜力做好充分准备。rn[/b] rnrnrn参与合作撰写该报告的研究员米尔斯·布伦达格在一份声明中说,“人工智能系统的表现不仅仅能达到人类水平,而且还远远超过了人类,这的确是常有的事情。考虑到超人般的追踪、监视、说服和实体目标识别能力,以及人工智能的能力虽然不及人类,但比人类更具可塑性等现实情况,所以不免让人深为担忧。” rnrn 论坛

vs 2005一点都不上手,问题一把抓

05-05

1:布局的时候并非所见即所得,很多时候会变形,有些控件的位置大小和位置无法达到教材中的位置,希望熟悉这方面的高手赐教。rn2:莫明其妙的出问题,相同的代码可是有些时候不能有相同的结果rn3:教材上面的许多东西:比如detailsVIEW控件等我怎么看不到编辑删除?是版本问题?现在成熟的是什么版本,我用的是team的rn求以上的解决办法rn另外我的aspnet_regsql出现下面问题,我也不知道怎样解决:rn异常:rn无法连接到 SQL Server 数据库。rnrn----------------------------------------rn故障的详细信息rn----------------------------------------rnrnSystem.Web.HttpException: 无法连接到 SQL Server 数据库。 ---> System.Data.SqlClient.SqlException: 在建立与服务器的连接时出错。在连接到 SQL Server 2005 时,在默认的设置下 SQL Server 不允许进行远程连接可能会导致此失败。 (provider: 命名管道提供程序, error: 40 - 无法打开到 SQL Server 的连接)rn 在 System.Data.SqlClient.SqlInternalConnection.OnError(SqlException exception, Boolean breakConnection)rn 在 System.Data.SqlClient.TdsParser.ThrowExceptionAndWarning(TdsParserStateObject stateObj)rn 在 System.Data.SqlClient.TdsParser.Connect(Boolean& useFailoverPartner, Boolean& failoverDemandDone, String host, String failoverPartner, String protocol, SqlInternalConnectionTds connHandler, Int64 timerExpire, Boolean encrypt, Boolean trustServerCert, Boolean integratedSecurity, SqlConnection owningObject, Boolean aliasLookup)rn 在 System.Data.SqlClient.SqlInternalConnectionTds.OpenLoginEnlist(SqlConnection owningObject, SqlConnectionString connectionOptions, String newPassword, Boolean redirectedUserInstance)rn 在 System.Data.SqlClient.SqlInternalConnectionTds..ctor(DbConnectionPoolIdentity identity, SqlConnectionString connectionOptions, Object providerInfo, String newPassword, SqlConnection owningObject, Boolean redirectedUserInstance)rn 在 System.Data.SqlClient.SqlConnectionFactory.CreateConnection(DbConnectionOptions options, Object poolGroupProviderInfo, DbConnectionPool pool, DbConnection owningConnection)rn 在 System.Data.ProviderBase.DbConnectionFactory.CreatePooledConnection(DbConnection owningConnection, DbConnectionPool pool, DbConnectionOptions options)rn 在 System.Data.ProviderBase.DbConnectionPool.CreateObject(DbConnection owningObject)rn 在 System.Data.ProviderBase.DbConnectionPool.UserCreateRequest(DbConnection owningObject)rn 在 System.Data.ProviderBase.DbConnectionPool.GetConnection(DbConnection owningObject)rn 在 System.Data.ProviderBase.DbConnectionFactory.GetConnection(DbConnection owningConnection)rn 在 System.Data.ProviderBase.DbConnectionClosed.OpenConnection(DbConnection outerConnection, DbConnectionFactory connectionFactory)rn 在 System.Data.SqlClient.SqlConnection.Open()rn 在 System.Web.Management.SqlServices.GetSqlConnection(String server, String user, String password, Boolean trusted, String connectionString)rn --- 内部异常堆栈跟踪的结尾 ---rn 在 System.Web.Management.SqlServices.GetSqlConnection(String server, String user, String password, Boolean trusted, String connectionString)rn 在 System.Web.Management.SqlServices.SetupApplicationServices(String server, String user, String password, Boolean trusted, String connectionString, String database, String dbFileName, SqlFeatures features, Boolean install)rn 在 System.Web.Management.SqlServices.Install(String database, SqlFeatures features, String connectionString)rn 在 System.Web.Management.ConfirmPanel.Execute()rn怎样设置远程连接?sql2005的设置彻底晕了rn谢谢您的帮助。分不多,只有这些,不好意思 论坛

没有更多推荐了,返回首页