【深度学习笔记】2.数学基础

数学基础

矩阵

矩阵的基础知识

  • 矩阵:矩阵式一个二位数组,每一个元素可以通过行+列索引获得

  • 张量:通常高纬度的数据都将张量。

    • 0阶:标量
    • 1阶:矢量
    • 2阶:矩阵
    • 3阶或以上:张量
  • 矩阵的秩:矩阵列向量中的极大线性无关组的数目,记作rank(A)

  • 矩阵的逆

    • 若矩阵A为方阵,当range(A)<n,称A为奇异矩阵或不可逆矩阵;
    • 若矩阵A为方阵,当range(A)=n,称A为奇异矩阵或不可逆矩阵;

    矩阵的逆可以记作
    A − 1 A^{-1} A1
    其中则有
    A A − 1 = A − 1 A = I n AA^{-1}=A^{-1}A=I_n AA1=A1A=In

  • 矩阵的广义逆矩阵

    • 如果矩阵不为方阵或者是奇异矩阵,不存在逆矩阵,但是可以计算其广义逆矩阵或者伪逆矩阵;
    • 对于矩阵A,如果存在矩阵 B使得 ABA=A,则称 B 为 A的广义逆矩阵。

概率统计

随机变量

随机变量是随机时间的数量体现,其可以是离散的或者连续的。

  • 离散随机变量是指拥有有限个或者可列无限多个状态的随机变量,比如抛硬币的概率P(x=1)=0.5

  • 连续随机变量是指变量值不可随机列举出来的随机变量,一般取实数值,比如射箭中靶概率P

常见的概率分布

伯努利分布

  • 伯努利试验:只可能有两种结果的单次随机实验
  • 它属于离散随机变量的分布,称为0-1分布
  • 其概率公式

KaTeX parse error: No such environment: gather* at position 8: \begin{̲g̲a̲t̲h̲e̲r̲*̲}̲ P(x=1) = p\\ P…

二项分布

  • 二项分布即重复n次伯努利试验,各试验之间都相互独立

  • 如果每次试验时,事件发生的概率为p,不发生的概率为1-p,则n次重复独立试验中事件发生k次的概率为
    P ( x = k ) = C n k p k ( 1 − p ) n − k P(x=k)=C^{k}_{n}p^{k}(1-p)^{n-k} P(x=k)=Cnkpk(1p)nk

均匀分布

均匀分布,又称矩形分布,在给定长度间隔[a,b]内的分布概率是等可能的,均匀分布由参数ab定义。
P ( x ) = 1 b − a , a < x < b P(x)=\frac{1}{b-a},a<x<b P(x)=ba1,a<x<b

高斯分布

又称为正态分布,是最常用的一种分布,由均值与标准差来决定其分布形状
P ( x ) = 1 2 π e − ( x − μ ) 2 2 σ 2 P(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} P(x)=2π 1e2σ2(xμ)2

指数分布

常用来表示独立随机事件发生的时间间隔的指数分布概率密度,指数分布重要特征是无记忆性。
P ( x ) = λ e − λ x P(x)=\lambda e^{-\lambda x} P(x)=λeλx

多变量概率分布

多条件概率

事件X在事件Y发生的条件下发生的概率,P(X|Y)

联合概率

事件X和事件Y同时发生的概率,P(X,Y)

其与多条件概率的性质有:
P ( Y ∣ X ) = P ( Y , X ) P ( X ) P(Y|X)=\frac{P(Y,X)}{P(X)} P(YX)=P(X)P(Y,X)

先验概率

根据以往经验在事件发生前所预知的概率分布

后验概率

指得到结果信息后重新修正的概率。也就是基于新的信息,修正后台先验概率的分布,从而更接近实际情况。比如口袋摸球实验,通过不断的摸球去调整红色球发生的概率

全概率公式

假设P(A) >0,则有
P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B) = \sum^n_{i=1}P(A_i)P(B|A_i) P(B)=i=1nP(Ai)P(BAi)

贝叶斯公式

贝叶斯公式是全概率公式的延申
P ( A i ∣ B ) = P ( B ∣ A i ) P ( A i ) P ( B ) = P ( B ∣ A i ) P ( A i ) ∑ j = 1 n P ( A i ) P ( B ∣ A j ) P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)}=\frac{P(B|A_i)P(A_i)}{\sum^n_{j=1}P(A_i)P(B|A_j)} P(AiB)=P(B)P(BAi)P(Ai)=j=1nP(Ai)P(BAj)P(BAi)P(Ai)

常用统计量

方差

常用于衡量随机变量与数学期望的偏离程度
V a r ( x ) = E { [ x − E ( x ) ] 2 } = E ( x 2 ) − [ E ( x ) ] 2 Var(x)=E\{[x-E(x)]^2\}=E(x^2)-[E(x)]^2 Var(x)=E{[xE(x)]2}=E(x2)[E(x)]2

协方差

衡量两个随机变量X和Y直接的总体误差
C o v ( X , Y ) = E { [ x − E ( x ) ] [ y − E ( y ) ] } = E ( x y ) − E ( X ) E ( y ) Cov(X,Y)=E\{[x-E(x)][y-E(y)]\}=E(xy)-E(X)E(y) Cov(X,Y)=E{[xE(x)][yE(y)]}=E(xy)E(X)E(y)

信息论

信息熵,可以看作是样本集合纯度一种指标,也可以认为是样本集合包含的平均信息量
H ( X ) = − ∑ i = 1 n P ( x i ) l o g 2 P ( x i ) H(X)=-\sum^n_{i=1}P(x_i)log_2P(x_i) H(X)=i=1nP(xi)log2P(xi)
值得注意的是,H(X)的值越小,则X的纯度越高,蕴含的不确定性越少

联合熵

两个随机变量X和Y的联合分布可以形成联合熵,度量二维样本的不确定性
H ( x , y ) = − ∑ i = 1 n ∑ j = 1 n P ( x i , y j ) l o g 2 P ( x i , y j ) H(x,y)=-\sum^n_{i=1}\sum^n_{j=1}P(x_i,y_j)log_2P(x_i,y_j) H(x,y)=i=1nj=1nP(xi,yj)log2P(xi,yj)

条件熵

在随机变量X发生的前提下,Y带来的熵
H ( Y ∣ X ) = ∑ i = 1 n P ( x i ) H ( Y ∣ X = x i ) = − ∑ i = 1 n P ( x i ) ∑ j = 1 n P ( y i ∣ x i ) l o g 2 P ( y j ∣ x i ) = − ∑ i = 1 n ∑ j = 1 n P ( x i , y i ) l o g 2 P ( y i ∣ x i ) H(Y|X)=\sum^n_{i=1}P(x_i)H(Y|X=x_i)=-\sum^n_{i=1}P(x_i)\sum^n_{j=1}P(y_i|x_i)log_2P(y_j|x_i)=-\sum^n_{i=1}\sum^n_{j=1}P(x_i,y_i)log_2P(y_i|x_i) H(YX)=i=1nP(xi)H(YX=xi)=i=1nP(xi)j=1nP(yixi)log2P(yjxi)=i=1nj=1nP(xi,yi)log2P(yixi)
其中熵、联合熵、条件熵之间的关系有
H ( Y ∣ X ) = H ( X , Y ) − H ( X ) H(Y|X)=H(X,Y)-H(X) H(YX)=H(X,Y)H(X)

互信息

指H(X|Y)与H(Y|X)的交集
I ( X ; Y ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X;Y)=H(X)+H(Y)-H(X,Y) I(X;Y)=H(X)+H(Y)H(X,Y)

相对熵

相对熵又称为KL散度,是描述两个概率分布P和Q差异的一种方法,记作D(P||Q)。在信息论中,D(P||Q)表示用概率分布Q来拟合真实分布P时,产生的信息表达的损耗,其中P表示信源的真实分布,Q表示P的近似分布。
KaTeX parse error: No such environment: gather* at position 8: \begin{̲g̲a̲t̲h̲e̲r̲*̲}̲ 离散形式:D(P||Q)=\…

交叉熵

通常用它来衡量目标值与预测值之间的差距,是深度学习中最常用的一种损失函数度量。比如在对抗生成网络中
D ( P ∣ ∣ Q ) = ∑ P ( x ) l o g P ( x ) Q ( x ) = ∑ P ( x ) l o g P ( x ) − ∑ P ( x ) l o g Q ( x ) = − H ( P ( x ) ) − ∑ P ( x ) l o g Q ( x ) D(P||Q)=\sum P(x)log\frac{P(x)}{Q(x)}=\sum P(x)logP(x)-\sum P(x)logQ(x)=-H(P(x))-\sum P(x)logQ(x) D(PQ)=P(x)logQ(x)P(x)=P(x)logP(x)P(x)logQ(x)=H(P(x))P(x)logQ(x)
交叉熵
H ( P , Q ) = − ∑ P ( x ) l o g Q ( x ) H(P,Q)=-\sum P(x)logQ(x) H(P,Q)=P(x)logQ(x)

最优化估计

最小二乘估计

最小二乘是通过最小化误差的平方和寻找数据的最佳函数匹配,常用于回归为题中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值