不休的turkeymz
码龄10年
关注
提问 私信
  • 博客:124,910
    社区:628
    问答:406
    动态:11
    125,955
    总访问量
  • 36
    原创
  • 1,044,618
    排名
  • 54
    粉丝
  • 0
    铁粉

个人简介:一名乱七八糟的开发

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2015-07-25
博客简介:

turkeym4的博客

查看详细资料
个人成就
  • 获得94次点赞
  • 内容获得17次评论
  • 获得429次收藏
  • 代码片获得817次分享
创作历程
  • 1篇
    2022年
  • 11篇
    2021年
  • 14篇
    2020年
  • 10篇
    2019年
成就勋章
TA的专栏
  • 竞赛总结
    2篇
  • 深度学习
    6篇
  • Python
    6篇
  • Spring
    7篇
  • 机器学习
    15篇
  • Java
兴趣领域 设置
  • 大数据
    mysqlredis
  • 后端
    spring
  • 人工智能
    机器学习nlp
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

473人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

省市区json字典映射关系

发布资源 2022.03.18 ·
json

千言数据集:文本相似度

发布资源 2022.02.25 ·
zip

【分数0.864】千言数据集:文本相似度

基于经典神经网络与BERT的文本相似度对比
原创
发布博客 2022.02.23 ·
2940 阅读 ·
3 点赞 ·
1 评论 ·
18 收藏

【12月Top 2】MarTech Challenge 点击反欺诈预测

百度点击反欺诈预测赛道baseline最终得分:89.1713
原创
发布博客 2021.12.31 ·
2026 阅读 ·
4 点赞 ·
0 评论 ·
11 收藏

MarTech Challenge 点击反欺诈预测数据集

发布资源 2021.12.30 ·
zip

【深度学习笔记】6.循环神经网络

循环神经网络计算图计算图的引入是为了后面更方便的表示网络,计算图是描述计算结构的一种图,它的元素包括节点(node)和边(edge),节点表示变量,可以是标量、矢量、张量等,而边表示的是某个操作,即函数。下面这个计算图表示复合函数关于计算图的求导,我们可以用链式法则表示,有下面两种情况。情况1情况2[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SUose3jf-1638344566342)(https://datawhalechina.github
原创
发布博客 2021.12.01 ·
1348 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【深度学习笔记】5.卷积神经网络

CNNCNN(Convolutional Neural Networks,CNN)中文名叫卷积神经网络。通常情况下,我们使用全连接神经网络的时候,权重矩阵的参数非常多。其使得整个网络收敛非常缓慢。但在自然图像处理中都具有局部不变性的特征,即尺度缩放、平移、旋转等操作不影响其语义信息,但是全连接前馈网络很难提取这些局部不变特征。所以就引入的CNN。CNN也是前馈神经网络,其最大的区别是受生物学上感受野的启发,引入了卷积核的概念。卷积卷积是一种计算方式,其连续卷积和离散卷积可以表达为如下形式:{(f
原创
发布博客 2021.11.27 ·
3740 阅读 ·
0 点赞 ·
0 评论 ·
13 收藏

【深度学习笔记】4.前馈神经网络

前馈神经网络发展历程神经元(M-P)神经元是1943年由两名科学家首次提出的神经元模型。在M-P模型中,神经元接受其他n个神经元的输入信号(0或1),这些输入信号经过权重加权并求和,将求和结果与阈值(threshold) θ 比较,然后经过激活函数处理,得到神经元的输出。y=∑i=1nωijxi+θy=\sum^n_{i=1}\omega_{ij}x_i+\thetay=i=1∑n​ωij​xi​+θM-P 模型可以表示多种逻辑运算,如取反运算、逻辑或、逻辑与。取反运算可以用单输入单
原创
发布博客 2021.11.24 ·
1410 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

【深度学习笔记】3.机器学习基础

机器学习基本概念机器学习指利用数学手段,使得计算机拥有相认一样的学习与总结能力。具体来说就是通过寻找数据中的规律,然后预测未知数据的技术。机器学习大致可分为3类:监督学习:学习已知数据特征与数据标签,预测未来数据的标签非监督学习:直接通过数据特征来预测数据标签强化学习:通过不断的训练回馈来优化的模型机器学习任务可分2类:监督学习:分类、回归非监督学习:聚类、降维数据集数据集样本是需要观察的数据的集合。通常用D(x_i)来表示,x_i是一个向量,表述数据集合中的第i个样本。其
原创
发布博客 2021.11.24 ·
585 阅读 ·
1 点赞 ·
2 评论 ·
1 收藏

【深度学习笔记】2.数学基础

数学基础矩阵矩阵的基础知识矩阵:矩阵式一个二位数组,每一个元素可以通过行+列索引获得张量:通常高纬度的数据都将张量。0阶:标量1阶:矢量2阶:矩阵3阶或以上:张量矩阵的秩:矩阵列向量中的极大线性无关组的数目,记作rank(A)矩阵的逆若矩阵A为方阵,当range(A)<n,称A为奇异矩阵或不可逆矩阵;若矩阵A为方阵,当range(A)=n,称A为奇异矩阵或不可逆矩阵;矩阵的逆可以记作A−1A^{-1}A−1其中则有AA−1=A−1A=InA
原创
发布博客 2021.11.24 ·
357 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【深度学习笔记】1.深度学习发展史

深度学习发展史人工智能分类人工智能分为3类:强人工智能:认为有可能制造出真正能推理和解决问题的智能机器弱人工智能:认为不可能制造出能真正进行推理和解决问题的智能机器超级人工智能:彻底超越人类的机器三次浪潮人工智能的发展大致可分为3个阶段第一阶段是1956 - 1980左右。这时候大部分处于发现的阶段,证明发展发力,相对比较缓慢第二阶段是1980 - 2000左右。这时候人工智能得到大量的发展,期间研究出很多机器学习的算法第三阶段是2000 - 至今。人工智能全面开花,涉及技术被应
原创
发布博客 2021.11.24 ·
1381 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

cudnn-11.3-windows-x64-v8.2.0.53.zip

发布资源 2021.04.23 ·
zip

LDA主题模型的原理和建模

目录什么是LDA主题模型背景知识贝叶斯理论gamma函数多个分布博鲁尼分布二项分布多项分布beta分布Dirichlet 分布开始了解LDAPython建模什么是LDA主题模型首先说明一下什么是主题模型。这里的主题模型是把一份份不同的文本内容通过某种方式来找到这些文本对应的主题。打个比方:我有一堆新闻类文档,但我想将这对文档进行主题分类。到底是娱乐?军事?政治?等主题。这时候就使用到主题模型。而这里的LDA和特征工程的LDA不一样。全名Latent Dirichlet Allocation,是一款基于
原创
发布博客 2021.02.05 ·
4874 阅读 ·
4 点赞 ·
1 评论 ·
47 收藏

基于Flask的优雅日志记录

目录前言Logging日记级别配置改造初始化配置添加配置打印日志请求日志拦截前言在之前的文章中我们讲过Flask项目的创建和Flask项目的部署。但在实际项目的运行中,少补了会发生一些我们无法预知的错误。而这个时候日志的输出就发挥着重要的左右。本文将基于Flask服务对日志格式就行修改,并按日期作为文件名进行本地化存储。Logging讲到日志,我们总不能每一次都print()这么low的对吧?所以这里先介绍一下logging模块。它提供一套完成的日志API,可以完美与我们的Flask服务契合。日记
原创
发布博客 2021.02.02 ·
9801 阅读 ·
8 点赞 ·
0 评论 ·
20 收藏

基于Flask的python服务部署

目录前言改造前言在上一篇文章中,我们知道了如何利用flask结合python来开发我们的微服务应用。具体文章地址在这里https://blog.csdn.net/turkeym4/article/details/112802300但在实际项目中,少不了的是我们需要把项目部署至linux服务当中。总不能每一个都执行python app.py方法。另外大家都知道python是单线程的,所以仅仅用flask内置的容易可能无法承受一个高并发。所以这里我们讲一下如何搞定flask的部署问题。改造刚刚有
原创
发布博客 2021.01.21 ·
572 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

python中用pandas读取csv文件,求大佬解释为什么会报错

答:

这里应该不是pandas读csv的问题。而是你下面dataframe切片的问题。

你的列是Flase,但实际其实并没有False这一列存在

回答问题 2021.01.20

基于Flask的python服务创建

目录前言调研服务创建结构的改造项目运行总结前言最近遇到一个java调python的问题。过去我们的架构是java通过ssh进入python服务器然后执行命令来运行。这对后面升级非常不友好,而且开发负责度高。所以现在考虑开发一个python服务,通过http的方式调用python模型。调研初期调研python的web服务框架(有点类似SpringBoot的那种),市面上常用的大概分两种:Django:市面上使用率最高的,功能齐全,三方库丰富Flask:轻便,功能简单网上有一个有趣的例子,可以
原创
发布博客 2021.01.19 ·
787 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

使用Python创建各式数据库连接

标题mysqloraclepostgresql国产达梦整合本文主要描述各种数据库产品的python连接方式。大部分连接以sqlalchemy为核心,调用不同的驱动,创建连接提供pandas或其他使用。所以使用的大前提下要安装sqlalchemy以及对应sql产品的依赖包pip install sqlalchemymysqlpip install mymysql# mysql版获获取连接方式# pip install mymysqldef getMysqlConnection(host, po
原创
发布博客 2020.12.23 ·
775 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多