剑指offer 学习笔记 对称的二叉树

本文介绍了一种判断二叉树是否对称的算法,通过对二叉树进行递归比较,检查每对子节点是否镜像对称,适用于所有节点值相等或不相等的情况。

面试题28:对称的二叉树。请实现一个函数,用来判断一棵二叉树是不是对称的。如果一棵二叉树和它的镜像一样,那么它是对称的。

遍历算法中的前序遍历是中左右的顺序遍历的,那么与它对称的树的中右左顺序遍历应该和它的前序遍历顺序相同。

但当一棵树的所有节点值都相等时,只要节点的数量相等,它的前序遍历和前序遍历的对称遍历都是一样的,这时只需要在遍历序列中加入空节点的值即:

#include <iostream>
using namespace std;

struct BinaryTreeNode {
    int m_nValue;
    BinaryTreeNode* m_pLeft;
    BinaryTreeNode* m_pRight;
};

bool isSymmetrical(BinaryTreeNode* pRoot1, BinaryTreeNode* pRoot2) {
    if (pRoot1 == nullptr && pRoot2 == nullptr) {
        return true;
    }
    if (pRoot1 == nullptr || pRoot2 == nullptr) {
        return false;
    }
    if (pRoot1->m_nValue != pRoot2->m_nValue) {
        return false;
    }

    return isSymmetrical(pRoot1->m_pLeft, pRoot2->m_pRight) && isSymmetrical(pRoot1->m_pRight, pRoot2->m_pLeft);
}

bool isSymmetrical(BinaryTreeNode *pRoot) {
    return isSymmetrical(pRoot->m_pLeft, pRoot->m_pRight);
}

int main() {
    BinaryTreeNode* pRoot = new BinaryTreeNode();
    pRoot->m_nValue = 5;
    
    BinaryTreeNode* pNode1 = new BinaryTreeNode();
    pNode1->m_nValue = 7;
    pNode1->m_pLeft = pNode1->m_pRight = nullptr;
    
    BinaryTreeNode* pNode2 = new BinaryTreeNode();
    pNode2->m_nValue = 7;
    pNode2->m_pLeft = pNode2->m_pRight = nullptr;
    
    pRoot->m_pLeft = pNode1;
    pRoot->m_pRight = pNode2;
    
    if (isSymmetrical(pRoot)) {
        cout << "是对称的。" << endl;
    } else {
        cout << "不是对称的。" << endl;
    }
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值