CVFH算法计算特征描述子

目录

1 原理介绍

2 数学公式推导

3 算法流程

4 示例代码

        CVFH(Clustered Viewpoint Feature Histogram)是一种用于三维点云中物体识别的特征描述子。它是从VFH(Viewpoint Feature Histogram)发展而来的,增强了对部分可见性和姿态变化的鲁棒性。CVFH通过在物体表面生成的法线方向和曲率来捕捉形状信息。

1 原理介绍

        CVFH的主要思想是通过对点云中每个点的法线进行分析,计算出描述点云几何形状的特征直方图。与VFH不同,CVFH通过对点云进行分割,以获得更稳定和更具代表性的特征。

  1. 法线估计:计算每个点的法线方向。
  2. 特征直方图:通过法线和曲率信息生成描述子。
  3. 聚类处理:将点云分割成若干个簇,分别计算每个簇的特征。

        CVFH特征不仅考虑法线方向和曲率信息,还可以结合点云的分布信息,通过分割和聚类获得更鲁棒的特征描述。

2 数学公式推导

CVFH的数学推导与VFH相似,但增加了聚类处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值