目录
CVFH(Clustered Viewpoint Feature Histogram)是一种用于三维点云中物体识别的特征描述子。它是从VFH(Viewpoint Feature Histogram)发展而来的,增强了对部分可见性和姿态变化的鲁棒性。CVFH通过在物体表面生成的法线方向和曲率来捕捉形状信息。
1 原理介绍
CVFH的主要思想是通过对点云中每个点的法线进行分析,计算出描述点云几何形状的特征直方图。与VFH不同,CVFH通过对点云进行分割,以获得更稳定和更具代表性的特征。
- 法线估计:计算每个点的法线方向。
- 特征直方图:通过法线和曲率信息生成描述子。
- 聚类处理:将点云分割成若干个簇,分别计算每个簇的特征。
CVFH特征不仅考虑法线方向和曲率信息,还可以结合点云的分布信息,通过分割和聚类获得更鲁棒的特征描述。
2 数学公式推导
CVFH的数学推导与VFH相似,但增加了聚类处理。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



