kafka-jdbc-connector-sink实现kafka中的数据同步到mysql

  • 这是一篇关于通过mysql主从复制的方式进行数据同步的教程: https://zixuephp.net/article-438.html

  • 接下来笔者要描述的是mysql的数据通过kafka,然后在实时进入其他mysql数据库的方案

  • 有同学可能会问到为什么这么麻烦,而不直接使用主从复制的方案来解决mysql的数据同步呢?原因是通过kafka connector可以做简单的数据过滤。

  • 由于kakfa connctor只能做简单的数据过滤,之后可能会使用mysql + kafka + flink的形式实现数据同步

  • kafka只用dbz connector获取mysql中的数据,具体操作细节不是本文重点,在此不在赘述,后续会补上关于dbz操作mysql数据库的文章

kafka中数据同步到mysql

需求

1. 把kafka中dbz产生的数据同步到mysql中并修改表的名字
2. 将某一topic中的数据按着不同的字段组合以及定义不同字段为主键将数据同步到不同的表中
* 暂时不考虑支持自动创建表和删除操作,因为一般生产环境中只有软删除

实现

需求1:
    dbz中的数据是before-after的格式,需要将after中的数据提取出来同步到mysql中。
    通过正则表达式读取topic-name, 将每个topic的名字添加上前缀作为mysql的表名字。
需求2:
    topic中的value值不可以为null,对于过滤的字段必须存在topic的struct中。

工具

kafka-jdbc-connector-sink.jar

配置

  • 通过正则读取dbz的topic,替换表名后写入mysql(启动一个connector操作多个topic,一个topci对应一张表)
curl -H "Content-Type:application/json" -X PUT -d '{

    "connector.class": "io.confluent.connect.jdbc.JdbcSinkConnector",
    "connection.url
  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Flink可以通过Kafka Connector来消费Kafka数据,并将数据写入MySQL数据库。具体步骤如下: 1. 在Flink程序引入Kafka Connector的依赖。 2. 创建一个Kafka Consumer,并设置相关的参数,如Kafka的地址、消费的Topic等。 3. 将Kafka Consumer读取到的数据进行处理,可以使用Flink提供的各种算子进行数据转换、过滤、聚合等操作。 4. 将处理后的数据写入MySQL数据库,可以使用Flink提供的JDBC Sink数据写入MySQL。 需要注意的是,Flink消费Kafka数据MySQL时,需要考虑数据的一致性和可靠性,可以使用Flink提供的Checkpoint机制来保证数据的一致性和容错性。同时,还需要考虑MySQL数据库的性能和可用性,可以使用连接池等技术来提高MySQL的性能和可用性。 ### 回答2: Apache Flink是一个流处理框架,可以方便地消费Kafka数据并将其写入MySQL数据库。Flink提供了Kafka数据源API来处理Kafka数据并将其转换为Flink数据流。Flink还提供了MySQL Sink API,可将Flink数据流转换为MySQL查询,并将其写入MySQL。 为了使用Kafka数据源API,需要使用以下代码创建KafkaSource: ``` FlinkKafkaConsumer consumer = new FlinkKafkaConsumer( "my-topic", new SimpleStringSchema(), properties); ``` 在上面的代码,“my-topic”是Kafka主题名称,SimpleStringSchema是序列化程序,properties是Kafka消费者的配置属性。 接下来,您可以使用DataStreamAPI将Kafka数据源转换为DataStream: ``` DataStream<String> stream = env.addSource(consumer); ``` 在上面的代码,env是Flink执行环境。 一旦您有了一个数据流,您可以使用MySQL Sink API将数据流写入MySQL数据库。使用以下代码创建MySQL Sink: ``` JDBCAppendTableSink sink = JDBCAppendTableSink.builder() .setDrivername("com.mysql.jdbc.Driver") .setDBUrl("jdbc:mysql://localhost:3306/mydatabase") .setUsername("myusername") .setPassword("mypassword") .setQuery("INSERT INTO mytable (id, name) VALUES (?, ?)") .setParameterTypes(Types.INT, Types.STRING) .build(); ``` 在上面的代码,query是MySQL插入查询,setParameterTypes指定插入的参数类型。 接下来,你可以使用DataStreamAPI将数据写入MySQL Sink: ``` stream.addSink(sink); ``` 在上面的代码,stream是上面创建的数据流。 最后,您需要启动Flink程序来开始消费Kafka数据并将其写入MySQL数据库: ``` env.execute(); ``` 现在,您已经成功地消耗了来自Kafka数据,并将其写入MySQL数据库。 ### 回答3: Flink是一个分布式实时计算引擎,它能够读取多种数据源,其包括Kafka消息队列。在Flink消费Kafka数据并将其写入MySQL数据库的步骤如下: 1. 添加依赖库 首先,需要在项目添加Flink和Kafka的依赖库,可以通过Maven或Gradle添加相关依赖库。例如,在Maven项目添加以下依赖库: ```xml <!-- Flink --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-core</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java_${scala.binary.version}</artifactId> <version>${flink.version}</version> </dependency> <!-- Kafka --> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>${kafka.version}</version> </dependency> ``` 其,`${flink.version}`和`${kafka.version}`需要根据实际情况替换为对应的版本号。 2. 创建Kafka数据源 然后,需要创建Flink的Kafka数据源,可以通过以下方式实现: ```java Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "localhost:9092"); properties.setProperty("group.id", "flink-group"); properties.setProperty("auto.offset.reset", "latest"); DataStream<String> stream = env .addSource(new FlinkKafkaConsumer<>( "topic-name", new SimpleStringSchema(), properties)); ``` 以上代码,我们创建了一个名为`stream`的DataStream对象,并且通过FlinkKafkaConsumer将它和Kafka的消息队列连接起来。其,`properties`设置了Kafka的连接参数,`"topic-name"`指定了要消费的Kafka主题名,`SimpleStringSchema`表示我们只关注字符串类型的Kafka消息。 3. 解析Kafka数据 接下来,需要对Kafka数据进行解析和转换。例如,我们将Kafka消息的JSON字符串转换为Java对象: ```java DataStream<Message> messages = stream.map(value -> { ObjectMapper mapper = new ObjectMapper(); return mapper.readValue(value, Message.class); }); ``` 这里,我们使用了Jackson库来将JSON字符串转换为Java对象,`Message.class`表示要转换成的对象类型。 4. 写入MySQL数据库 最后一步是将解析并转换后的数据写入MySQL数据库,可以通过JDBC实现。以下是简单的JDBC写入数据示例: ```java messages.addSink(new RichSinkFunction<Message>() { private Connection connection = null; private PreparedStatement statement = null; @Override public void open(Configuration parameters) throws Exception { super.open(parameters); Class.forName("com.mysql.jdbc.Driver"); connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/db_name", "user", "password"); statement = connection.prepareStatement("INSERT INTO messages (id, content) VALUES (?, ?)"); } @Override public void close() throws Exception { super.close(); if (statement != null) { statement.close(); } if (connection != null) { connection.close(); } } @Override public void invoke(Message message, Context context) throws Exception { statement.setInt(1, message.getId()); statement.setString(2, message.getContent()); statement.executeUpdate(); } }); ``` 以上代码,`RichSinkFunction`表示数据写入器,`open`方法创建了JDBC连接对象,`close`方法关闭了连接对象,`invoke`方法对每个解析的Message对象执行插入数据的操作。需要注意的是,需要将`jdbc:mysql://localhost:3306/db_name`的`db_name`、`user`和`password`替换为实际MySQL数据库的值。 同时还需要添加对应的MySQL JDBC依赖库。 通过以上步骤,就可以使用Flink将Kafka消息消费并写入MySQL数据库了。同时,还可以进行更多的数据转换和处理操作,例如过滤、分组、聚合等,从而实现更复杂的实时数据分析和计算。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值