函数、反函数

本文详细解释了函数的一对一映射条件、定义域、四种特性(有界性、单调性、奇偶性和周期性),以及如何通过图像理解和证明函数性质。还介绍了反函数的定义、互换过程以及求解常见函数的反函数方法,强调了对数函数性质在考研中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

张宇说:函数用铅直渐近线、反函数用水平渐近线判断是否为单值函数

一、函数

1. 定义

设x与y是两个变量,D是一个给定的数集。若对于每一个x∈D,按照一定的法则f,都有一个确定的值y与之对应,则称y为x的函数,记作y=f(x),称x为自变量,y为因变量,称数集D为此函数的定义域。即当自变量确定时,函数值必须唯一确定。

比如y²=x,一个x对应两个y,所以不是函数

2. 函数成立的两个基本条件(重要)

  • 一对一的映射关系 成为函数的条件
  • 定义域

2.1. 定义域

在这里插入图片描述

3. 函数的四种特性

有界性、单调性、奇偶性、周期性

3.1. 有界性(常考证明

有界:有上界+有下界

设f(x)的定义域为D,数集I⊂D 。如果存在某个正数M,使对于任一x∈I,有|f(x)|≤M&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值