张宇说:函数用铅直渐近线、反函数用水平渐近线判断是否为单值函数
一、函数
1. 定义
设x与y是两个变量,D是一个给定的数集。若对于每一个x∈D,按照一定的法则f,都有一个确定的值y与之对应,则称y为x的函数,记作y=f(x),称x为自变量,y为因变量,称数集D为此函数的定义域。即当自变量确定时,函数值必须唯一确定。
比如y²=x,一个x对应两个y,所以不是函数
2. 函数成立的两个基本条件(重要)
- 一对一的映射关系
成为函数的条件
- 定义域
2.1. 定义域
3. 函数的四种特性
有界性、单调性、奇偶性、周期性
3.1. 有界性(常考证明)
有界:有上界+有下界
设f(x)的定义域为D,数集I⊂D 。如果存在某个正数M,使对于任一x∈I,有|f(x)|≤M&#