图的基本概念和术语
图:
G = (V,E) 即 Graph = (Vertex,Edge)
V:顶点(数据元素)的有穷非空集合;
E:边的有穷集合。
无向图:每条边都是无方向的
有向图:每条边都是有方向的
完全图:任意两个点都有一条边相连
稀疏图:有很少边或弧的图(e<nlogn)
稠密图:有较多边或弧的图
网:边/弧带权的图
邻接:有边/弧相连的两个顶点之间的关系
存在(Vi,Vj),则称Vi和Vj互为邻接点;
存在<Vi,Vj>,则称Vi邻接到Vj,Vj邻接于Vi。
关联(依附):边/弧与顶点之间的关系
存在 (Vi,Vj) / <Vi,Vj>,则称该边/弧关联于Vi和Vj
顶点的度:与该顶点相关联的边的数目,记为 TD(v)
在有向图中,顶点的度等于该顶点的入度与出度之和
顶点 v的入度是以 v 为终点的有向边的条数,记为 ID(v)
顶点 v的出度是以 v 为始点的有向边的条数,记为 OD(v)
上图的度为
| 顶点 | 度 |
|---|---|
| V0 | 2 |
| V1 | 3 |
| V2 | 3 |
| V3 | 2 |
| V4 | 2 |
上图的度,入度,出度及度为
| 顶点 | 人度 | 出度 | 度 |
|---|---|---|---|
| V0 | 1 | 2 | 3 |
| V1 | 1 | 0 | 1 |
| V2 | 1 | 1 | 2 |
| V3 | 1 | 1 | 2 |
当有向图中仅一个顶点的入度为 0 ,其余顶点的入度均为 1 ,则此时该图是一棵树,而且是一棵有向树。
路径:接续的边构成的顶点序列
路径长度:路径上边或弧的数据/权值之和
回路(环):第一个顶点和最后一个顶点相同的路径
简单路径:除路径起点和终点可以相同外,其余顶点均不相同的路径。
简单回路(简单环):除路劲起点和终点相同外,其余顶点均不相同的路径。
连通图(强连通图):在无(有)向图 G=(V,E) 中,若对任意两个顶点v、u 都存在从 v 到 u 的路径,则称 G 是连通图(强连通图)
权:图中边或弧所具有的相关数称为权。表明从一个顶点到另一个顶点的距离或耗费
网:带权的图称为网
子图:设有两个图 G = (V,E),G1 = (V1,E1),若V1 <= V ,E1 <= E,则称 G1 是 G 的子图
例如下面 b 和 c 是 a 的子图
连通分量(强连通分量):
- 无向图G的
极大连通子图称为G的连通分量
极大连通子图的意思是:该子图是G的连通子图,将G的任何不在该子图中的顶点加入,子图不再连通。
- 有向图G的
极大强连通子图称为G的强连通分量
极大强连通子图的意思是:该子图是G的强连通子图,将D的任何不在该子图中的顶点加入,子图不再是强连通的。
极小连通子图:该子图是G的连通子图,在该子图中删除任何一条边,子图不再连通
生成树:包含无向图G所有顶点的极小连通子图
生成森林:对非连通图,由各个连通分量的生成树的集合

被折叠的 条评论
为什么被折叠?



