PlantUML 绘图

官网

示例

在这里插入图片描述

绘制时序图

USB 枚举过程 PlantUML 源码

@startuml
host   <-- device : device insert host
note right        : step 1
host   ->  device : get speed, reset, speed check
note right        : step 2
host   ->  device : get device descriptors
note right        : step 3
device --> host   : return device descriptors
note right        : step 4
host   ->  device : reset again
note right        : step 5
host   ->  device : set device address
note right        : step 6
host   ->  device : use new address get device descriptors(real get)
note right        : step 7
device --> host   : return device descriptors
note right        : step 8
host   ->  device : get config descriptors or get config descriptors sets
note right        : step 9
device --> host   : return config descriptors or config descriptors sets
note right        : step 10
host   ->  device : get string descriptors
note right        : step 11
device --> host   : return string descriptors
note right        : step 12
host   ->  device : get class special descriptors
note right        : step 13
device --> host   : return class special descriptors
note right        : step 14
@enduml

效果
在这里插入图片描述

绘制定时图片

USB 字节序 PlantUML 源码

@startuml
header Page 1
footer Page 1 of 1

<style>
timingDiagram {
  .red
  {
    Linecolor red
  }
  .blue 
  {
    Linecolor blue
  }
 
}
</style>

concise "status" as status
concise "DATA" as data 
binary "DP" as DP  <<red>>
binary "DM" as DM  <<blue>>

@0
data is "SE0"
DP is low
DM is low

@2
data is "idle"
DP is high
DM is low

@6
data is "0"
status is "SYNC 0x80"
DP is low
DM is high

@7
data is "0"
DP is high
DM is low

@8
data is "0"
DP is low
DM is high

@9
data is "0"
DP is high
DM is low

@10
data is "0"
DP is low
DM is high

@11
data is "0"
DP is high
DM is low

@12
data is "0"
DP is low
DM is high

@13
data is "1"
DP is low
DM is high


@14
data is "1"
status is "PID SETUP 0x2D"
DP is low
DM is high

@15
data is "0"
DP is high
DM is low

@16
data is "1"
DP is high
DM is low

@17
data is "1"
DP is high
DM is low


@18
data is "0"
DP is low
DM is high

@19
data is "1"
DP is low
DM is high

@20
data is "0"
DP is high
DM is low

@21
data is "0"
DP is low
DM is high


@22
data is "0"
status is "other"
DP is high
DM is low

@enduml

效果
在这里插入图片描述

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值