最小二乘参数解析解推导

序言

本文适用人群:对最小二乘法已有基本的了解,想进一步加深对模型底层相关公式理解的小伙伴

学过数理统计的应该都知道最小二乘法,根据给定的特征数据x和标签y,并假设x和y之间只满足线性关系,即y=\beta_1x_1+\beta_2x_2+...\beta_nx_n,求解\beta的近似值。

一.数学解析解

一种求解思路是通过构造损失函数,求其梯度等于0时的\beta值。梯度的求解可以使用例如梯度下降算法等迭代算法求得,但对于该问题来说,存在更高效的数学解析解。下面将会给出解析解的推导过程,其中会用到矩阵求导的知识,相关内容我在我的另一篇文章中已有比较清楚的说明:

矩阵求导原理详解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值