序言
本文适用人群:对最小二乘法已有基本的了解,想进一步加深对模型底层相关公式理解的小伙伴
学过数理统计的应该都知道最小二乘法,根据给定的特征数据x和标签y,并假设x和y之间只满足线性关系,即,求解
的近似值。
一.数学解析解
一种求解思路是通过构造损失函数,求其梯度等于0时的值。梯度的求解可以使用例如梯度下降算法等迭代算法求得,但对于该问题来说,存在更高效的数学解析解。下面将会给出解析解的推导过程,其中会用到矩阵求导的知识,相关内容我在我的另一篇文章中已有比较清楚的说明:
本文适用人群:对最小二乘法已有基本的了解,想进一步加深对模型底层相关公式理解的小伙伴
学过数理统计的应该都知道最小二乘法,根据给定的特征数据x和标签y,并假设x和y之间只满足线性关系,即,求解
的近似值。
一种求解思路是通过构造损失函数,求其梯度等于0时的值。梯度的求解可以使用例如梯度下降算法等迭代算法求得,但对于该问题来说,存在更高效的数学解析解。下面将会给出解析解的推导过程,其中会用到矩阵求导的知识,相关内容我在我的另一篇文章中已有比较清楚的说明:
1380
742

被折叠的 条评论
为什么被折叠?