目前有许多数据分析的场景从批处理到流处理的演变, 虽然可以将批处理作为流处理的特殊情况来处理,但是分析无穷集的流数据通常需要思维方式的转变并且具有其自己的术语,例如,“windowing(窗口化)”、“at-least-once(至少一次)”、“exactly-once(只有一次)” 。
对于刚刚接触流处理的人来说,这种转变和新术语可能会非常混乱。 Apache Flink 是一个为生产环境而生的流处理器,具有易于使用的 API,可以用于定义高级流分析程序。Flink 的 API 在数据流上具有非常灵活的窗口定义,使其在其他开源流处理框架中脱颖而出。
在本节将讨论用于流处理的窗口的概念,介绍 Flink 的内置窗口,并解释它对自定义窗口语义的支持。
什么是 Window?
下面我们结合一个现实的例子来说明。
就拿交通传感器的示例:统计经过某红绿灯的汽车数量之和?
假设在一个红绿灯处,我们每隔 15 秒统计一次通过此红绿灯的汽车数量,如下图:

可以把汽车的经过看成一个流,无穷的流,不断有汽车经过此红绿灯,
本文深入探讨了流处理中的窗口化概念,以 Apache Flink 为例,介绍了时间窗口、计数窗口和会话窗口的使用,以及它们的源码分析。通过交通传感器数据的示例,阐述了窗口如何处理无界流数据,展示了不同类型的窗口如何在特定场景下应用。此外,文章还讨论了如何自定义窗口,包括 WindowAssigner、Trigger 和 Evictor 的使用和实现,旨在帮助读者更好地理解和掌握 Flink 中的窗口机制。
订阅专栏 解锁全文
52

被折叠的 条评论
为什么被折叠?



