点击上方 "zhisheng"关注, 星标或置顶一起成长
Flink 从入门到精通 系列文章
前言
Flink 是目前最流行的大数据及流式计算框架之一,用户可以使用 Java/Scala/Python 的DataStream 接口或者标准 SQL 语言来快速实现一个分布式高可用的流式应用,通过内部的 Java JIT、off-heap 内存管理等技术优化性能,并且有完整的 Source、Sink、WebUI、Metrics 等功能集成,让 Flink 几乎成为了流式计算的事实标准。
但是当处理海量数据的时候,很容易出现各种异常和性能瓶颈,这时我们需要优化系统性能时,常常需要分析程序运行行为和性能瓶颈。Profiling 技术是一种在应用运行时收集程序相关信息的动态分析手段,常用的 JVM Profil
本文介绍了如何使用jvm-profiler和FlameGraph生成Flink作业的交互式火焰图,以帮助分析性能瓶颈。通过在TaskManager中注入Java agent,收集打点数据,最终生成SVG图片进行性能分析。
订阅专栏 解锁全文
534

被折叠的 条评论
为什么被折叠?



