当一个应用程序需求比较简单的情况下,数据转换涉及的 operator(算子)可能不多,但是当应用的需求变得越来越复杂时,可能在一个 Job 里面算子的个数会达到几十个、甚至上百个,在如此多算子的情况下,整个应用程序就会变得非常复杂,所以在编写 Flink Job 的时候要是能够随时知道 Job 的执行计划那就很方便了。
刚好,Flink 是支持可以获取到整个 Job 的执行计划的,另外 Flink 官网还提供了一个可视化工具 visualizer(可以将执行计划 JSON 绘制出执行图),如下图所示。
如何获取执行计划 JSON?
既然知道了将执行计划 JSON 绘制出可查看的执行图的工具,那么该如何获取执行计划 JSON 呢?方法很简单,你只需要在你的 Flink Job 的 Main 方法 里面加上这么一行代码:
System.out.println(env.getExecutionPlan());
然后就可以在 IDEA 中右键 Run 一下你的 Flink Job,从
本文详细介绍了如何查看Flink作业的执行计划,包括获取执行计划JSON、使用Flink官网的visualizer工具生成执行计划图,以及深入探究执行计划背后的StreamGraph和JobGraph。文章还讨论了Flink中算子链接的条件和如何禁止Operator chain,帮助优化作业性能。
订阅专栏 解锁全文
823

被折叠的 条评论
为什么被折叠?



