排序:
默认
按更新时间
按访问量
RSS订阅

小白学习Machine Learning in Action-机器学习实战------决策树

书中说:k近邻算法可以完成很多分类任务,但它最大的缺点就是无法给出数据的内在含义,决策树的主要优势就在于数据形式很容易理解。决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,机器学习算法最终使用这些机器从数据集中创造的规则。 决策树算法的学习分为如下几个步骤: 一、从数学上讨论如何划分数据集...

2017-08-27 19:35:11

阅读数 486

评论数 0

小白学习Machine Learning in Action-机器学习实战------分类之k近邻算法

k近邻算法思想:根据测量不同特征值之间的距离来进行分类。

2017-08-20 17:48:52

阅读数 191

评论数 0

小白学习Machine Learning in Action-机器学习实战------Python基础

书中介绍python基础时,使用了Numpy模块,其中存在两种不同的数据类型——矩阵matrix和数组array,都可以用来处理行列表示的数字元素。但两者之间存在哪些不同呢? 当一个程序中既有matrix又有array时,我是很茫然的,为什么这里要用matrix,哪里要用array?什么时候应该用...

2017-08-19 23:35:19

阅读数 229

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭