POJ3555//POJ3130//POJ1474-求解多边形内核

31 篇文章 0 订阅

POJ3555: 题目:题目链接

 

题意:就是判断一个多边形是不是有核,(多边形内核);(学习.....)

 

分析:就是每次枚举一条线段,用这条线段去切割原来的多边形,判断最后剩余的点数。如果没有了的话,那么就没有核的存在了,反之则有

 

一个我认为比较清楚的代码:

 

#include <iostream>
#include <cstdio>
#include <string>
#include <string.h>
#include <map>
#include <vector>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <queue>
#include <set>
#include <stack>
#include <functional>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cassert>
#include <bitset>
#include <stack>
#include <ctime>
#include <list>
#define INF 0x7fffffff
#define max3(a,b,c) (max(a,b)>c?max(a,b):c)
#define min3(a,b,c) (min(a,b)<c?min(a,b):c)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;

#define exp 1e-10

struct node
{
    double x;
    double y;
};

node point[105];//记录最开始的多边形
node q[105]; //临时保存新切割的多边形
node p[105]; //保存新切割出的多边形
int n,m;//n的原先的点数,m是新切割出的多边形的点数
double a,b,c;

void getline(node x,node y)  //获取直线ax+by+c==0
{
    a=y.y-x.y;
    b=x.x-y.x;
    c=y.x*x.y-x.x*y.y;
}

node intersect(node x,node y) //获取直线ax+by+c==0  和点x和y所连直线的交点
{
    double u=fabs(a*x.x+b*x.y+c);
    double v=fabs(a*y.x+b*y.y+c);
    node ans;
    ans.x=(x.x*v+y.x*u)/(u+v);
    ans.y=(x.y*v+y.y*u)/(u+v);
    return ans;
}

void cut()                            //用直线ax+by+c==0切割多边形
{
    int cutm=0,i;
    for(i=1; i<=m; i++)
    {
        if(a*p[i].x + b*p[i].y+c>=0)  //题目是顺时钟给出点的
        {
                                      //所以一个点在直线右边的话,那么带入值就会大于等于0
            q[++cutm]=p[i];           //说明这个点还在切割后的多边形内,将其保留
        }
        else
        {
            if(a*p[i-1].x+b*p[i-1].y+c>0) //该点不在多边形内,但是它和它相邻的点构成直线与
            {
                //ax+by+c==0所构成的交点可能在新切割出的多边形内,
                q[++cutm]=intersect(p[i-1],p[i]); //所以保留交点
            }
            if(a*p[i+1].x+b*p[i+1].y+c>0)
            {
                q[++cutm]=intersect(p[i+1],p[i]);
            }
        }
    }
    for(i = 1; i <= cutm; i++)
        p[i] = q[i];
    p[cutm+1] = q[1];
    p[0] = q[cutm];
    m = cutm;
}

void solve()
{
    int i;
    for(i = 1; i <= n; i++)
        p[i] = point[i];
    point[n+1] = point[1];
    p[n+1]=p[1];
    p[0]=p[n];
    m = n;
    for(i=1; i<=n; i++)
    {
        getline(point[i], point[i+1]); //根据point[i]和point[i+1]确定直线ax+by+c==0
        cut();                         //用直线ax+by+c==0切割多边形
    }
}

int main()
{
    int cas,i;
    scanf("%d",&cas);
    while(cas--)
    {
        scanf("%d",&n);
        for(i=1; i<=n; i++)
            scanf("%lf%lf",&point[i].x,&point[i].y);
        solve();
        if(m==0)
            printf("NO\n");
        else
            printf("YES\n");
    }
    return 0;
}


 

POJ 3130 题目:题目链接

 

题意:和3555是一样的不过不知道这个精度是怎么影响的要用1e-8的,其它的都一样:

 

代码:

 

#include <iostream>
#include <cstdio>
#include <string>
#include <string.h>
#include <map>
#include <vector>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <queue>
#include <set>
#include <stack>
#include <functional>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cassert>
#include <bitset>
#include <stack>
#include <ctime>
#include <list>
#define INF 0x7fffffff
#define max3(a,b,c) (max(a,b)>c?max(a,b):c)
#define min3(a,b,c) (min(a,b)<c?min(a,b):c)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;

#define exp 1e-8

struct node
{
    double x;
    double y;
};

node point[105];//记录最开始的多边形
node q[105]; //临时保存新切割的多边形
node p[105]; //保存新切割出的多边形
int n,m;//n的原先的点数,m是新切割出的多边形的点数
double a,b,c;

void getline(node x,node y)  //获取直线ax+by+c==0
{
    a=y.y-x.y;
    b=x.x-y.x;
    c=y.x*x.y-x.x*y.y;
}

node intersect(node x, node y) //获取直线ax+by+c==0  和点x和y所连直线的交点
{
    double u = fabs(a*x.x + b*x.y+c);
    double v = fabs(a*y.x + b*y.y+c);
    node ans;
    ans.x = (x.x*v+y.x*u)/(u+v);
    ans.y = (x.y*v+y.y*u)/(u+v);
    return ans;
}

void cut()                            //用直线ax+by+c==0切割多边形
{
    int cutm=0,i;
    for(i=1; i<=m; i++)
    {
        if(a*p[i].x + b*p[i].y+c <=0)  //题目是逆时钟给出点的所以一个点在直线右边的话,那么带入值就会大于等于0
        {
            q[++cutm]=p[i];           //说明这个点还在切割后的多边形内,将其保留
        }
        else
        {
            if(a*p[i-1].x+b*p[i-1].y+c <= 0) //该点不在多边形内,但是它和它相邻的点构成直线与ax+by+c==0所构成的交点可能在新切割出的多边形内,
            {
                q[++cutm]=intersect(p[i-1], p[i]); //所以保留交点
            }
            if(a*p[i+1].x+b*p[i+1].y+c <= 0)
            {
                q[++cutm]=intersect(p[i+1],p[i]);
            }
        }
    }
    for(i = 1; i <= cutm; i++)
        p[i] = q[i];
    p[cutm+1] = q[1];
    p[0] = q[cutm];
    m = cutm;
}

void solve()
{
    int i;
    for(i = 1; i <= n; i++)
        p[i] = point[i];
    point[n+1] = point[1];
    p[n+1]=p[1];
    p[0]=p[n];
    m = n;
    for(i=1; i<=n; i++)
    {
        getline(point[i], point[i+1]); //根据point[i]和point[i+1]确定直线ax+by+c==0
        cut();                         //用直线ax+by+c==0切割多边形
    }
}

int main()
{
    int i;

    while(scanf("%d",&n) && n)
    {
        for(i=1; i<=n; i++)
            scanf("%lf%lf",&point[i].x, &point[i].y);
        solve();
        if(m == 0)
            printf("0\n");
        else
            printf("1\n");
    }

    return 0;
}


 POJ1474: 题目:题目链接

 

分析:也是一个求多边形内核的问题

 

代码:

 

#include <iostream>
#include <cstdio>
#include <string>
#include <string.h>
#include <map>
#include <vector>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <queue>
#include <set>
#include <stack>
#include <functional>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cassert>
#include <bitset>
#include <stack>
#include <ctime>
#include <list>
#define INF 0x7fffffff
#define max3(a,b,c) (max(a,b)>c?max(a,b):c)
#define min3(a,b,c) (min(a,b)<c?min(a,b):c)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;

#define exp 1e-8

struct node
{
    double x;
    double y;
};

node point[105];//记录最开始的多边形
node q[105]; //临时保存新切割的多边形
node p[105]; //保存新切割出的多边形
int n,m;//n的原先的点数,m是新切割出的多边形的点数
double a,b,c;

void getline(node x,node y)  //获取直线ax+by+c==0
{
    a=y.y-x.y;
    b=x.x-y.x;
    c=y.x*x.y-x.x*y.y;
}

node intersect(node x, node y) //获取直线ax+by+c==0  和点x和y所连直线的交点
{
    double u = fabs(a*x.x + b*x.y+c);
    double v = fabs(a*y.x + b*y.y+c);
    node ans;
    ans.x = (x.x*v+y.x*u)/(u+v);
    ans.y = (x.y*v+y.y*u)/(u+v);
    return ans;
}

void cut()                            //用直线ax+by+c==0切割多边形
{
    int cutm=0,i;
    for(i=1; i<=m; i++)
    {
        if(a*p[i].x + b*p[i].y+c >=0)  //题目是顺时钟给出点的所以一个点在直线右边的话,那么带入值就会大于等于0
        {
            q[++cutm]=p[i];           //说明这个点还在切割后的多边形内,将其保留
        }
        else
        {
            if(a*p[i-1].x+b*p[i-1].y+c > 0) //该点不在多边形内,但是它和它相邻的点构成直线与ax+by+c==0所构成的交点可能在新切割出的多边形内,
            {
                q[++cutm]=intersect(p[i-1], p[i]); //所以保留交点
            }
            if(a*p[i+1].x+b*p[i+1].y+c > 0)
            {
                q[++cutm]=intersect(p[i+1],p[i]);
            }
        }
    }
    for(i = 1; i <= cutm; i++)
        p[i] = q[i];
    p[cutm+1] = q[1];
    p[0] = q[cutm];
    m = cutm;
}

void solve()
{
    int i;
    for(i = 1; i <= n; i++)
        p[i] = point[i];
    point[n+1] = point[1];
    p[n+1]=p[1];
    p[0]=p[n];
    m = n;
    for(i=1; i<=n; i++)
    {
        getline(point[i], point[i+1]); //根据point[i]和point[i+1]确定直线ax+by+c==0
        cut();                         //用直线ax+by+c==0切割多边形
    }
}

int main()
{
    int i;
    int cnt = 0;
    while(scanf("%d",&n) && n)
    {
        cnt++;
        for(i=1; i<=n; i++)
            scanf("%lf%lf",&point[i].x, &point[i].y);
        solve();
        printf("Floor #%d\n", cnt);
        if(m == 0)
            printf("Surveillance is impossible.\n\n");
        else
            printf("Surveillance is possible.\n\n");
    }

    return 0;
}


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值