题目:题目链接
这道题目的意思就是说给你一幅图,然后你可以往这个图里面添加边。要求就是你插入边之后不能产生重复边和环,并且不能形成强联通图。问你最多可以添加多少条边?
分析:我们可以这样判断,就是说我们添加完所有能加入的边之后,我们可以把这时候形成的图分成两部分,比如
x,y;这是一定可以有只有从x到y的边,木有Y到x的。同时x,y均为完全图。假设两者中各有点数a,b.则有a+b==n;按照
联通图的定义,我们可以得到总的边数为sum = x*(x+1) + y(y-1)+x*y;就是x内部的边加上y内部的边在加上x,y之间
的边。合并之后有sum = n*n-n-a*b;要使sum尽量大,则a,b需要差距尽量大.我们把原先的图缩点(刚刚学习的,囧
(/ □ \)),得到若干个联通分量。如果某个出度/入度为0,那么就可以作为一部分。当然,要是这个部分的点数越
小越好。然后从这个部分填边这时候能拥有的边数是最多的。
#include <iostream>
#include <cstdio>
#include <string>
#include <string.h>
#include <map>
#include <vector>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <queue>
#include <set>
#include <stack>
using namespace std;
#define N 100010
int n,m;
int sumliantong;
int DFS[N];
int input[N];
int output[N];
int low[N];
int cnt[N];
int index;
bool vis[N];
int num[N];
vector<int>L[N];
stack<int>S;
struct node
{
int l,r;
} link[N];
void tarjan(int x)
{
DFS[x] = low[x] = index++;
vis[x] = true;
S.push(x);//x入栈,沿着x找链接点
for(int i = 0; i <(int)L[x].size(); ++i)
{
int tp = L[x][i];
if(!DFS[tp])//如果没有计算联通
{
tarjan(tp);//找这个点的联通
low[x] = min(low[x], low[tp]);//找链接的节点数小的
}
else if(vis[tp] && low[x] > DFS[tp])
low[x] = DFS[tp];
}
if(DFS[x] == low[x])
{
sumliantong++;//计算强联通量个数
int i;
for(i = S.top(), S.pop(); i != x; i = S.top(),S.pop())
{
cnt[i] = sumliantong;//这些都属于sumliantong
vis[i] = false;
}
cnt[i] = sumliantong;
vis[i] = false;
}
}
__int64 work()
{
for(int i = 1; i <= n; ++i)//找强联通分量
{
if(!DFS[i])//是否已经属于某一个联通分量
tarjan(i);
}
if(sumliantong == 1)
return -1;
memset(input, 0, sizeof(input));//入度
memset(output, 0, sizeof(output));//出度
for(int i = 0; i < m; ++i)
{
if(cnt[link[i].l] == cnt[link[i].r])//属于同一联通图
continue;
output[cnt[link[i].l]] ++;//计算此联通量的出度
input[cnt[link[i].r]] ++;//同理入度
}
memset(num, 0, sizeof(num));
for(int i = 1; i <=n; ++i)//属于每个强联通的数量
num[cnt[i]] ++;
__int64 ans = -1;
for(int i = 1; i <= sumliantong; ++i)
{
if(input[i] == 0 || output[i] == 0)
{
int a = num[i];
int b = n - num[i];
if(a == 1 || b == 1)
return 1ll * (n-1) * (n-1) - m;
else
ans = max(1ll * a * (a-1) + 1ll * b * (b-1) + 1ll * a * b - m, ans);//取最大
}
}
return ans;
}
int main()
{
int t;
scanf("%d", &t);
int cpp = 1; //case标记
int a, b;
while(t--)
{
index = 1;
sumliantong = 0;
scanf("%d%d", &n, &m);
memset(DFS, 0, sizeof(DFS));
for(int i = 0; i <= n; ++i)//清空
L[i].clear();
for(int i = 0; i < m; ++i)
{
scanf("%d%d", &a, &b);
link[i].l = a;
link[i].r = b;
L[a].push_back(b);//链接
}
__int64 ans = work();
printf("Case %d: %I64d\n", cpp++, ans);
}
return 0;
}