Snail—算法学习之最大公约、最小公倍

本文介绍了如何计算两个数的最大公约数(GCD)和最小公倍数(LCM)。通过设定两个数m、n,GCD为a,可以推导出LCM为a乘以m和n除以a的商。关键在于找到最大公约数a,可以通过遍历较小数(smallNumber)的2到其本身的所有数,找到能同时整除m和n的最大数,即为最大公约数。最后,使用算法实现这一过程。
摘要由CSDN通过智能技术生成

最小公倍数和最大公约数 在学校的时候 不管学什么编程 练习总会有这个题 看起来挺简单的

其实 它就是那么的简单

在编代码之前 我们可以做一下这样的假设

有两个数  m、n

最大公约数是a

那么 m = b  * a;

        n  = c  * a;

那么 最小公倍数k = a * b * c;

                          k =  m * n / a;

所以 求出最大公约数a是关键


那说到这里 最大公约数咋求呢

公约数就是m、n都能整除的数且是最大的那个  但是不能比m、n其中一个大 必须小于等于 m、n中最小的那个数

那么就把m、n中最小的数赋值给smallNumber,大得数赋值给largeNumber, 然后从 2 到smallNumber之间遍历

value来记录他们公约数  知道循环到smallNumber 最后value 就是最大的那个公约数

那么,下面就用代码 来实现这个小小的算法  呵呵呵呵呵呵呵

//声明一个函数 求得m、n的最大公约数
int maxCommonDivide(int m,int n){
    int value,smallNumber,largeNumber;
    
    /*
    //求出最大数和最小数
    largeNumber = m > n ? m : n;
    smallNumber = m < n ? m : n;
     */
    if (m >= n) {
        smallNumber = n;
        largeNumber = m;
    }
    if (n > m) {
        smallNumber = m;
        largeNumber = n;
    }
    
    for (int i = 2; i <= smallNumber; i++) {
        if ((smallNumber % i == 0) && (largeNumber % i == 0)) {
            value = i;
        }
    }
    return value;
}

//声明并实现一个函数 根据最大公约数来求出最小公倍数
int minCommonMultiple(int m, int n){
    return m * n / maxCommonDivide(m, n);
}

int main(int argc, const char * argv[]){
    int maxCommonDivideNumber = maxCommonDivide(19, 9);
    int minCommonMultipleNumber = minCommonMultiple(19, 9);
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值