从欧几里得到拓展欧几里得

欧几里得定理:

公式表述

gcd(a,b)=gcd(b,a mod b)
证明:a可以表示成a = kb + r,则r = a mod b
假设d是a,b的一个 公约数,则有
d|a, d|b,而r = a - kb,因此d|r
因此d是(b,a mod b)的 公约数
假设d 是(b,a mod b)的 公约数,则
d | b , d |r ,但是a = kb +r
因此d也是(a,b)的 公约数
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证;

拓展欧几里得定理:
其实就是:gcd(a,b)=ax+by;求解x,y的方法:
例如:gcd(225,21)=3
           225=10*21+15,    21=1*15+6
             15=2*6+3,          6=2*3+0
反过来:
            3=15-2*6
              =15-2*(21-1*15)
              =3*15-2*21
              =3*(225-10*21)-2*21=3*225-32*21
求解 x,y的方法的理解
设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,ab<>0 时
设 ax1+by1=gcd(a,b);
bx2+(a mod b)y2=gcd(b,a mod b);
根据朴素的 欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a-[a/b]*b)y2=ay2+bx2-[a/b]*by2;
也就是ax1+by1==ay2+b(x2-[a/b]*y2);
根据恒等定理得:x1=y2; y1=x2-[a/b]*y2;
#include <iostream>
#include <cstdio>
usingnamespace std;
intx,y,q;
voidextend_Eulid(inta,intb){
    if(b == 0){
        x = 1;y = 0;q = a;
    }else{
        extend_Eulid(b,a%b);
        inttemp = x;x = y;y = temp - a/b*y;
    }
}
intmain(){
    inta,b;
    cin>>a>>b;
    extend_Eulid(a,b);
    printf("%d=(%d)*%d+(%d)*%d\n",q,x,a,y,b);
    return0;
}


上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
以上内容摘自百度百科;

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值