强化学习掌舵:探索温室环境控制的无限可能

40 篇文章 0 订阅
31 篇文章 1 订阅

( 于景鑫 国家农业信息化工程技术研究中心)随着人口增长和资源紧缺,现代农业面临着 "增产、优质、高效、生态" 的多重挑战。而设施农业,尤其是温室生产,以其 "用1料地养活10人口" 的潜力,成为应对挑战的重要抓手。然而,千变万化的温室环境,对传统控制技术提出了严峻考验。人工智能(AI)的蓬勃发展,为破解这一难题带来了曙光。其中,强化学习(RL)犹如 "点石成金" 的魔法,以其灵活智能的优化能力,在温室环境控制领域崭露头角。本文将全面解析RL在温室领域的应用前景、关键技术和实现路径,并展望其未来的发展趋势和挑战,为RL重塑现代农业提供新思路。

ac1630a15ecaf9561d1853019e8bd570.jpeg54654b0875575826a3e364dd58b1faa1.jpeg

图片来源:https://www.scribbr.com/ai-tools/reinforcement-learning/

一、解码强化学习:"小车寻宝" 的奥秘

何为强化学习(RL)?它又是如何运作的?对于许多初次接触该领域的读者,这些问题可能略显抽象。不妨让我们做个形象的类比:将RL智能体想象成一辆在复杂迷宫中探索的小车,它的任务是寻找最佳路线以获得最多奖励(如宝藏)。在这个过程中:

- 迷宫的布局,对应着RL中的环境状态(State),小车通过传感器感知当前所处位置的特征。

- 小车的动作(如前进、转弯),对应着RL的动作(Action),即面对当前状态应采取的控制决策。

- 到达终点的奖赏或惩罚(如获得宝藏或撞墙),对应着RL的即时反馈(Reward),引导小车学习正确路线。

- 小车的 "路线偏好",对应着RL的策略(Policy),即从状态到动作的映射法则。

9d1c976a36315247d337303c6ef1a7d9.jpeg

小车通过不断试错和积累经验,更新自己的 "认知地图" (价值函数)和 "路线偏好",最终学会在任意位置做出最优决策,实现 "宝藏最大化"。这,就是RL的本质:让机器通过与环境的交互,进行目标导向的自主学习,找到最佳行动策略。

二、RL赋能温室环境控制的应用

温室环境控制,是调节光、温、湿、气等参数,为作物营造最佳生长条件,实现 "增产、提质、节能" 的过程。传统方法如PID控制,难以应对环境的动态波动和 "小气候" 差异。而RL以其灵活的 "适应力",为破解这一难题提供了新思路:

 一项进展是使用DRL来调整温室暖通空调系统中的PID参数。这种方法通过根据与温室环境的实时相互作用动态调整 PID 参数来优化能耗并保持作物的舒适度。与传统的开/关和手动调谐的PID控制器相比,经过DRL调整的PID控制器显示能耗减少了8.81%至12.99%,并改善了温度调节,与最低舒适温度的偏差低至2.07%至3.13% [1]。

8ca289ace9ab408fc0006152d6377769.jpeg
图片来源:https://www.sciencedirect.com/science/article/pii/S0957417424009928?via%3Dihub

另一种创新方法涉及基于人工智能的控制框架,该框架将 DRL 与强大的优化算法相结合,以管理半封闭的温室。该方法适应不同的气候条件和作物生长阶段,与传统控制技术相比,能耗降低了57%。该框架还将设定值偏差提高了26.8%以上,证明了其在维持精确环境条件方面的有效性 [2]。 

949448a897d1f8464eb1906e5fad33af.jpeg

Fig. An overview of the proposed RO-DRL control framework for greenhouse climate control and energy optimization. 图片来源:https://www.sciencedirect.com/science/article/pii/S2666792422000373?via%3Dihub

使用强化学习实现传感器的最佳放置进一步增强了温室的环境监管。通过解决多臂强盗问题,研究人员确定了监控温度和湿度的最佳传感器位置,这对于有效的气候控制至关重要。这种方法可以提高数据收集和决策的效率,最终提高环境监管的精度 [4]。 

a5b8c31b8b076142bcb58b61a3ad5500.jpeg
图片来源:https://ieeexplore.ieee.org/document/9481897

此外,RL-Informer 模型将 Q 学习与时间序列预测相结合,以优化草莓的生长环境。该模型根据环境变量预测植物生长,并使用这些预测来指导实时环境调整。RL-Informer模型在不同的种植目标下实现了17.81%和20.78%的产量增长,这凸显了其优化温室环境的潜力 [5]。 

d99fb4a22960aeabeeec774c3df8d0db.jpeg
图片来源:https://www.mdpi.com/2073-4395/13/8/2057

三、从深度强化学习到多智能体协同:RL技术的创新路径

尽管RL在温室环境控制中初显锋芒,但单一算法往往难以撬动复杂系统的革新。近年来,研究者们从多个方面对RL进行了拓展和融合,不断拓宽其应用边界:

1. 端到端的深度强化学习(DDRL):将RL与深度学习(DL)结合,使智能体能够直接从原始高维状态(如环境图像)中提取特征和决策,避免了人工设计状态空间的局限。一项基于DDRL的温室湿度调控研究,相比传统RL方法,实现了更稳定高效的控制效果。

f4698c43d3c3fac5a8df19ed91f47a46.jpeg

图片来源:https://www.linkedin.com/pulse/deep-reinforcement-learning-drl-jean-luc-d-etcheverry

2. 基于模型的数据高效学习:传统的RL多为 "model-free" 范式,样本利用率低下。基于模型的RL通过学习一个虚拟环境模型,实现数据的高效利用和策略的快速迭代。这对于数据稀缺、成本高昂的温室环境尤为重要。

3. 分层递归的复合策略优化:针对多尺度、多周期的复杂控制问题,分层RL通过将原问题分解为多个子任务,实现不同时空粒度的协同优化。AAGM (Action-Advantage-Gradient-Method) 等创新算法,为温室环境的多层次调控带来了新的思路。

4. 多智能体的协同优化范式:在大型现代化温室中,往往部署着多个异构智能体(如传感器、执行器等),它们在优化全局绩效的同时,还需考虑彼此间的博弈和协同。多智能体RL (MARL) 为解决这一难题提供了一种全新的分布式优化范式。

e8b3f77e9068adc377879de07c2f6568.jpeg

[Image by jcomp](https://www.freepik.com/free-vector/autonomous-smart-car-automatic-wireless-sensor-driving-road-around-car-autonomous-smart-car-goes-scans-roads-observe-distance-automatic-braking-system_26413332.htm#query=self driving cars highway&position=34&from_view=search&track=ais) on Freepik

此外,元强化学习、迁移学习等新兴方法,也为提升RL智能体的泛化能力和知识复用能力带来了曙光。未来,这些创新技术必将持续赋能温室环境控制,推动设施农业迈向更高阶的智能化。

四、RL融合专家系统的 "孪生智能"

在温室环境控制中,除了大数据和算力,领域知识和经验规则同样不可或缺。将RL与专家系统相结合,有望实现 "孪生智能" 式的协同优化:

1. 知识引导的智能探索:专家系统所蕴含的先验知识,可引导RL智能体在 "更优方向" 上探索,加速策略学习进程。同时,RL智能体在不断的 "试错" 中,也可以发现新的规律和策略,为知识库的更新迭代提供素材。

2. 算法SymbiosisRL的决策可解释:通过将专家系统的规则嵌入RL的状态-动作空间,可实现 "可解释性" 与 "自适应性" 的双赢。一方面,规则约束下的决策过程更加透明可控;另一方面,RL的在线学习也为规则的动态调整提供了依据。

3. 基于知识蒸馏的策略提炼:知识蒸馏是一种通过 "师生网络" 传递知识的机器学习范式。将专家系统视为 "教师",RL智能体视为 "学生",通过蒸馏提炼,可获得兼具泛化性和鲁棒性的混合策略。

b2d8c4d6045e0d67f5934762bd8f22b2.jpeg
c4c83e119f296da81ee0edeebdc946d2.jpeg

图片来源:https://arxiv.org/html/2402.13116v3

这种 "用知识赋能数据,以模型融通规则" 的 "孪生智能" 范式,有望成为RL在复杂场景应用的一个重要方向,为温室环境控制的智能化升级插上腾飞的双翼。

五、RL重塑现代农业的机遇与挑战

RL为温室环境控制打开了崭新的智能化之门,但其大规模落地尚面临诸多机遇和挑战:

1. 机遇:RL在 "3A" (适应Adaptive、自主Autonomous、协同Automated) 方面的优势,与设施农业的发展诉求高度契合。随着RL理论的日益成熟和计算力的不断进步,其在温室领域的应用将迎来更广阔的前景。

2. 挑战:算法层面,如何设计更高效的探索策略、更精准的回报函数,以及如何平衡 "即时回报" 与 "长期收益",仍是亟待攻克的难题。此外,现有RL方法多针对单一环境和任务,如何实现不同温室、不同作物间的策略泛化和知识复用,也是一大挑战。

3. 系统层面,如何实现RL系统的工程化和产业化落地,涉及到算法-软件-硬件的协同设计,以及与传统控制系统的有机融合。同时,还需建立健全的数据采集、处理、应用流程,搭建端到端的闭环优化体系。

4. 应用层面,RL控制系统的安全性、可解释性、实时性,都对其在农业领域的推广应用提出了更高要求。如何平衡 "性能" 与 "透明"、"自适应" 与 "可控"、"即时响应" 与 "长期优化",既是技术难题,也是伦理课题。

参考文献:

Adesanya, M. A., et al. (2024). Deep reinforcement learning for PID parameter tuning in greenhouse HVAC system energy Optimization: A TRNSYS-Python cosimulation approach. Expert Systems with Applications.Ajagekar, A., et al. (2022). Energy-efficient AI-based Control of Semi-closed Greenhouses Leveraging Robust Optimization in Deep Reinforcement Learning. Advances in Applied Energy.Hu, H., et al. (2018). A fast online multivariable identification method for greenhouse environment control problems. Neurocomputing.Uyeh, D. D., et al. (2021). A Reinforcement Learning Approach for Optimal Placement of Sensors in Protected Cultivation Systems. IEEE Access.Lu, Y., et al. (2023). Optimizing Controlled Environmental Agriculture for Strawberry Cultivation Using RL-Informer Model. Agronomy.[Authors not provided]. (2023). MF^2: Model-free reinforcement learning for modeling-free building HVAC control with data-driven environment construction in a residential building. Building and Environment.Sivamayil, K., et al. (2023). A Systematic Study on Reinforcement Learning Based Applications. Energies.Morimoto, J., & Doya, K. (2000). Robust Reinforcement Learning.[Authors not provided]. (2022). Reinforcement learning with algorithms from probabilistic structure estimation. Automatica.

Kim, S. H., & Shin, U. C. (2023). The Performance of Reinforcement Learning for Indoor Climate Control Devices according to the Level of Outdoor Air Particulate Matters. Buildings.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AgriTube

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值