unclelikestolearn
码龄12年
求更新 关注
提问 私信
  • 博客:18,817
    问答:624
    动态:3
    19,444
    总访问量
  • 3
    原创
  • 12
    粉丝
  • 21
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2013-03-29

个人简介:计算机硕士、多项美国技术专利、15年美国IT从业经验。有在小型创业公司以及大型专业软件公司工作经验。对IT技术架构,技术趋势、IT技术团队管理等有持续的兴趣。

博客简介:

u010088996的博客

查看详细资料
个人成就
  • 获得8次点赞
  • 内容获得3次评论
  • 获得41次收藏
  • 博客总排名938,025名
创作历程
  • 11篇
    2019年
成就勋章
TA的专栏
  • 区块链
    10篇
  • 钱包
    1篇
  • raspbian
  • 地址
  • Ruby
    1篇
  • Rails
    1篇
  • Paper_trail
    1篇
  • 数据库
    1篇
  • 零知识证明
    7篇
  • zk-SNARKs
    8篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络图像处理nlp
创作活动更多

王者杯·14天创作挑战营·第2期

这是一个以写作博客为目的的创作活动,旨在鼓励码龄大于4年的博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见https://bbs.csdn.net/topics/619735097 2、文章质量分查询:https://www.csdn.net/qc 我们诚挚邀请你们参加为期14天的创作挑战赛!

66人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【译】用例子来介绍zk-SNARKs

原文链接在本文中我们的目标是从一个实用的角度对 zk-SNARKs做一个总览。我们将把真正的数学当作一个黑盒子,但是我们会围绕如何使用这些数学知识建立起一些直观的认识。最后我们给出一个简单的应用,就是最近集成进以太坊的zk-SNARKs。零知识证明零知识证明的目的是让验证者能够让自己相信证明者知道某个称作证词(witness)的秘密参数。这个秘密参数事先不暴露给验证者或任何其他人,而且这个参...
翻译
发布博客 2019.07.27 ·
3156 阅读 ·
1 点赞 ·
1 评论 ·
11 收藏

【译】SNARKs讲解「第七部分」:椭圆曲线的配对

Explaining SNARKs Part VII: Pairings of Elliptic CurvesAriel Gabizon | June 7, 2017| Updated: October 1, 2018<< Part VIIn Part VI, we saw an outline of the Pinocchio zk-SNARK. We were missi...
翻译
发布博客 2019.07.24 ·
1866 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

【译】SNARKs讲解「第六部分」:皮诺曹协议

Explaining SNARKs Part VI: The Pinocchio ProtocolAriel Gabizon | May 10, 2017<< Part VIn part V we saw how a statement Alice would like to prove to Bob can be converted into an equivalent for...
翻译
发布博客 2019.07.24 ·
1381 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

【译】SNARKs讲解「第五部分」:从计算到多项式

Explaining SNARKs Part V: From Computations to PolynomialsAriel Gabizon | April 25, 2017| Updated: October 1, 2018<< Part IVIn the three previous parts, we developed a certain machinery for...
翻译
发布博客 2019.07.23 ·
1100 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

【译】SNARKs讲解「第四部分」:如何让多项式盲求值可验证

Explaining SNARKs Part IV: How to make Blind Evaluation of Polynomials VerifiableAriel Gabizon | April 11, 2017| Updated: October 1, 2018<< Part IIIIn this part, we build on Part II and III...
翻译
发布博客 2019.07.22 ·
865 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【译】SNARKs讲解「第三部分」:关于系数知识的测试和假设

In Part II, we saw how Alice can blindly evaluate the hiding E(P(s))of her polynomial P of degree d, at a point s belonging to Bob. We called this “blind” evaluation, because Alice did not learn sin...
翻译
发布博客 2019.07.21 ·
696 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【译】SNARKs讲解「第二部分」:多项式的盲求值

原文链接 https://electriccoin.co/blog/snark-explain2/在这篇文章里,我们将回顾多项式的概念,解释多项式“盲求值”的概念,以及如何用同态隐藏(HH)来实现它。在以后的文章里,我们将看到盲求值会是构造SNARK的核心工具。我们用FpF_pFp​来表示尺度为ppp的域。也就是说,FpF_pFp​的元素集合是 {0,...,p−1}\{0,...,p-1\}...
翻译
发布博客 2019.07.20 ·
697 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

【译】SNARKs讲解「第一部分」:同态隐藏

原文链接 https://electriccoin.co/blog/snark-explain/构造zk-SNARKs,需要对它的几个组成部分进行仔细的组合。要完整理解这些组成部分如何协同工作,是需要些时间的。如果我不得不在这些组成部分里选出最耀眼的一个,它可能就是将被我称为同态隐藏(也叫HH)的那个1。在本文里,我们将会讲解HH是什么,然后举一个例子,说明为什么HH很有用以及它是如何被构造出...
翻译
发布博客 2019.07.20 ·
1786 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

DIY一个百元以内的比特币硬件冷钱包

DIY一个百元以内的比特币硬件冷钱包为什么要硬件冷钱包如何DIY呢1. 买一个Raspberry PI2. 安装最新的Raspbian2. 在raspberry pi上安装Electrum冷钱包3. 在一台PC上安装Electrum热钱包(Watching-only)4. 做个测试为什么要硬件冷钱包安全!安全!安全!时常听说交易所被hacked了,用户的加密货币被盗了,或者用户自己的在线钱包...
原创
发布博客 2019.07.10 ·
5212 阅读 ·
3 点赞 ·
2 评论 ·
10 收藏

从paper_trail到Append Only数据库再到区块链技术的联想

以前在用Ruby on Rails做SaaS项目的时候,常常会用到一个叫paper_trail的gem(软件包)。这个gem可以帮助对关系数据库表实施审核功能。其具体做法就是把表的所以历史变化都记录下来。当时就想,是否可以设计一种Append only 关系数据库。所有的数据库记录写到数据库后,不能删除,也不能修改。若数据有新的变化,就再写一行。所有记录都有时间戳。这样整个数据库都有了审核功能。...
原创
发布博客 2019.07.08 ·
385 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

握奇w2160(身份证读写机)如何与浏览器进行通信?

答:

可以考虑使用类似chrome extension的技术, extension过网络获得数据,然后更新浏览器页面的dom。

回答问题 2019.04.03

如何在Chrome里复制image到系统clipboard

如何在Chrome里复制image到系统clipboard里为何?如何?结果?为何?最近有点时间做一个小工具,其中需要把浏览器里的图片拷贝粘贴到Keynote里。于是做了些调研,总结如下:如何?直接上代码// Vanilla js code. No 3rd party libs neededdocument.getElementById("copyBtn").addEventListe...
原创
发布博客 2019.04.02 ·
758 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏