1、题目:
Problem Description
设有一连通无向图,其顶点值为字符型并假设各值互不相等,采用邻接矩阵表示法存储表示。利用DFS算法求其深度优先生成树(从下标0的顶点开始遍历),并在遍历过程中输出深度优先生成树的每一条边。
Input
有多组测试数据,每组数据的第一行为两个整数n和e,表示n个顶点和e条边(0<n<20);第二行为其n个顶点的值,按输入顺序进行存储;后面有e行,表示e条边的信息,每条边信息占一行,包括边所依附的顶点下标i和j,数据之间用空格隔开。
Output
输出深度优先生成树的每一条边,每组输出占一行,每条边信息之间有一空格,每行最后均有一空格,具体格式见样例。
Sample Input
4 4 ABCD 0 1 0 3 1 2 1 3
Sample Output
(A,B) (B,C) (B,D)
2、参考代码一:
#include <iostream>
using namespace std;
int n,e;
int vis[111];
int edge[111][111];
void dfs(int v,char* s){
vis[v]=1;
for(int i=0;i<n;i++)
{
if(edge[v][i]==1 && vis[i]==0)
{
cout<<"("<<s[v]<<","<<s[i]<<") ";
dfs(i,s);
}
}
}
int main()
{
int i,u,v;
char str[111];
while(cin>>n>>e)
{
cin>>str;
memset(edge,0,sizeof(edge));
memset(vis,0,sizeof(vis));
for(i=0;i<e;i++)
{
cin>>u>>v;
edge[u][v]=edge[v][u]=1;
}
dfs(0,str);
cout<<endl;
}
return 0;
}
参考代码二:
#include <iostream>
#include <string.h>
using namespace std;
class MGraph{
private:
int vertexNum,arcNum;
int edge[111][111];
char vertex[111];
public:
int vis[111];
MGraph(char* a,int n,int m);
~MGraph(){}
void DFS(int v,char* a);
};
MGraph::MGraph(char* a,int n,int m){
vertexNum=n;
arcNum=m;
int i,j;
for(i=0;i<n;i++)
vertex[i]=a[i];
memset(edge,0,sizeof(edge));
while(m--){
cin>>i>>j;
edge[i][j]=edge[j][i]=1;
}
}
void MGraph::DFS(int v,char* a){
vis[v]=1;
for(int j=0;j<vertexNum;j++){
if(edge[v][j]==1 && !vis[j]){
cout<<"("<<vertex[v]<<","<<vertex[j]<<") ";
DFS(j,a);
}
}
}
int main()
{
int n,m,i;
char a[111];
while(cin>>n>>m){
cin>>a;
MGraph w(a,n,m);
memset(w.vis,0,sizeof(w.vis));
w.DFS(0,a);
cout<<endl;
}
return 0;
}