符号三角形_hdu_2510(深搜).java

17 篇文章 0 订阅
http://acm.hdu.edu.cn/showproblem.php?pid=2510
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 729    Accepted Submission(s): 361


Problem Description
符号三角形的 第1行有n个由“+”和”-“组成的符号 ,以后每行符号比上行少1个,2个同号下面是”+“,2个异 号下面是”-“ 。计算有多少个不同的符号三角形,使其所含”+“ 和”-“ 的个数相同 。 n=7时的1个符号三角形如下:
+ + - + - + + 
+ - - - - + 
- + + + - 
- + + - 
- + - 
- - 
+
 

Input
每行1个正整数n <=24,n=0退出.
 

Output
n和符号三角形的个数. 
 

Sample Input
15
16
19
20
0
 

Sample Output
15 1896
16 5160
19 32757

20 59984


import java.util.Scanner;

public class Main{//打表AC
	public static void main(String[] args) {
		Scanner input=new Scanner(System.in);
		int a[]={0,0,0,4,6,0,0,12,40,0,0,171,410,0,0,1896,5160,0,0,32757,59984,0,0,431095,822229};
		while(true){
			int n=input.nextInt();
			if(n==0)
				break;
			System.out.println(n+" "+a[n]);
		}
	}
}

import java.util.Scanner;

public class Main{//深搜超时
	static int n,sum;
	public static void main(String[] args) {
		Scanner input=new Scanner(System.in);
		while((n=input.nextInt())!=0){
			sum=0;
			String b=new String("");
			dfs(0,b);
			System.out.println(n+" "+sum);
		}
	}
	private static void dfs(int id, String b) {
		if(id==n){
		//	System.out.println(b);
			jc(b);
			return;
		}
		dfs(id+1,b+"+");
		dfs(id+1,b+"-");
	}
	private static void jc(String str) {
		char s[]=str.toCharArray();
		long a1=0,a2=0;
		for(int i=0;i<s.length;i++){
			if(s[i]=='+')a1++;
			else a2++;
		}
		for(int i=1;i<=n-1;i++){
			for(int j=1;j<=n-i;j++){
				if(s[j-1]==s[j]){
					a1++;
					s[j-1]='+';
				}
				else{
					a2++;
					s[j-1]='-';
				}
			}
		}
		if(a1==a2){
			//System.out.println("&&&&"+str);
			sum++;
		}
	}
}

*import java.util.Scanner;

public class Main{//打表
	static int n,sum;
	public static void main(String[] args) {
		Scanner input=new Scanner(System.in);
		for(n=1;n<25;n++){
			sum=0;
			String b=new String("");
			dfs(0,b);
			System.out.print(sum+",");
		}
	}
	private static void dfs(int id, String b) {
		if(id==n){
		//	System.out.println(b);
			jc(b);
			return;
		}
		dfs(id+1,b+"+");
		dfs(id+1,b+"-");
	}
	private static void jc(String str) {
		char s[]=str.toCharArray();
		long a1=0,a2=0;
		for(int i=0;i<s.length;i++){
			if(s[i]=='+')a1++;
			else a2++;
		}
		for(int i=1;i<=n-1;i++){
			for(int j=1;j<=n-i;j++){
				if(s[j-1]==s[j]){
					a1++;
					s[j-1]='+';
				}
				else{
					a2++;
					s[j-1]='-';
				}
			}
		}
		if(a1==a2){
			//System.out.println("&&&&"+str);
			sum++;
		}
	}
}


 
好的,关于 HDU4992 求所有原根的问题,我可以给出以下解答: 1. 首先,我们需要知道什么是原根。原根是指模 n 意义下,所有与 n 互质的数 a 的最小正整数 k 次幂对 n 取模的值覆盖了所有与 n 互质的数。简单来说,就是如果一个数 a 是模 n 意义下的原根,那么 a 的任何正整数次幂对 n 取模的值都不相同,且能覆盖所有与 n 互质的数。 2. 为了求模 n 意义下的所有原根,我们需要先求出与 n 互质的数的个数 phi(n)。phi(n) 可以使用欧拉函数求出。 3. 然后,我们需要枚举模 n 意义下的所有数,判断它是否是原根。具体来说,对于每个 a,我们需要判断 a 的每个小于 phi(n) 的正整数次幂对 n 取模的值是否都不相同,且能覆盖所有与 n 互质的数。如果是,那么 a 就是模 n 意义下的原根。 4. 代码实现可以参考以下 Java 代码: ``` import java.util.*; public class Main { static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static int phi(int n) { int res = n; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { res = res / i * (i - 1); while (n % i == 0) { n /= i; } } } if (n > 1) { res = res / n * (n - 1); } return res; } static int pow(int a, int b, int mod) { int res = 1; while (b > 0) { if ((b & 1) != 0) { res = res * a % mod; } a = a * a % mod; b >>= 1; } return res; } static boolean check(int a, int n, int phi) { for (int i = 1, j = pow(a, i, n); i <= phi; i++, j = j * a % n) { if (j == 1) { return false; } } return true; } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); while (scanner.hasNext()) { int n = scanner.nextInt(); int phi = phi(n); List<Integer> ans = new ArrayList<>(); for (int i = 1; i < n; i++) { if (gcd(i, n) == 1 && check(i, n, phi)) { ans.add(i); } } Collections.sort(ans); for (int x : ans) { System.out.print(x + " "); } System.out.println(); } } } ``` 其中,gcd 函数用于求最大公约数,phi 函数用于求欧拉函数,pow 函数用于快速幂求模,check 函数用于判断一个数是否是原根。在主函数中,我们依次读入每个 n,求出 phi(n),然后枚举模 n 意义下的所有数,判断它是否是原根,将所有原根存入一个 List 中,最后排序输出即可。 希望我的回答能够帮到你,如果你有任何问题,欢迎随时提出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值