分类算法属性选择度量--信息增益、增益率、Gini指标

属性选择度量就是分裂规则,用来确定分裂属性和分裂子集


信息增益

信息增益:某属性的信息增益值越大,这个属性作为一棵树的根节点就能使这棵树更简洁,降低树的高度。衡量给定属性划分训练样本的能力。计算信息增益的公式需要用到“熵”(Entropy)。

熵:衡量任意样本集的纯度,熵越小,样本纯度越高。以二分类为例,
熵
H(X)表示熵,横坐标表示类别A在这两个类{A,B}中的百分比,越接近0.5,表示两个类对抗越明显。值越接近0,表示某个类占的比例越大或越小,也就是样本纯度越高。

好的,我来解释一下如何构建决策树分类模型。 1. 数据准备 首先,需要准备一些训练数据,包括每个样本的特征和标签。特征是用来划分样本的属性,标签是样本的分类结果。 2. 选择划分属性 在构建决策树的过程中,需要选择一个划分属性。划分属性应该能够将不同分类的样本分开,使得同一类别的样本尽可能地相似。 划分属性选择可以基于Gini指标信息增益Gini指标是一种度量样本纯度的指标,它表示从样本中随机选择两个样本,它们属于不同类别的概信息增益是另一种度量样本纯度的指标,它表示选择属性后,样本中的信息增加的量。 3. 构建决策树 根据划分属性,将样本集划分为两个子集,然后递归地构建子树。在构建子树的过程中,需要重复上述步骤,选择新的划分属性,并将子集划分为更小的子集,直到所有的子集都满足纯度的要求。 4. 剪枝 决策树容易出现过拟合的问题,为了避免这个问题,需要进行剪枝。剪枝的方法有预剪枝和后剪枝两种方式。预剪枝是在构建决策树的过程中,规定一些条件,如果不满足条件,则停止递归。后剪枝是在构建完整个决策树之后,对树进行剪枝。 以上就是构建决策树分类模型的基本步骤。需要注意的是,在实际应用中,还需要对数据进行预处理,例如去除噪声数据、处理缺失值等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值