属性选择度量就是分裂规则,用来确定分裂属性和分裂子集
信息增益
信息增益:某属性的信息增益值越大,这个属性作为一棵树的根节点就能使这棵树更简洁,降低树的高度。衡量给定属性划分训练样本的能力。计算信息增益的公式需要用到“熵”(Entropy)。
熵:衡量任意样本集的纯度,熵越小,样本纯度越高。以二分类为例,
H(X)表示熵,横坐标表示类别A在这两个类{A,B}中的百分比,越接近0.5,表示两个类对抗越明显。值越接近0,表示某个类占的比例越大或越小,也就是样本纯度越高。
信息增益:某属性的信息增益值越大,这个属性作为一棵树的根节点就能使这棵树更简洁,降低树的高度。衡量给定属性划分训练样本的能力。计算信息增益的公式需要用到“熵”(Entropy)。
熵:衡量任意样本集的纯度,熵越小,样本纯度越高。以二分类为例,
H(X)表示熵,横坐标表示类别A在这两个类{A,B}中的百分比,越接近0.5,表示两个类对抗越明显。值越接近0,表示某个类占的比例越大或越小,也就是样本纯度越高。