sparkSQL自定义数据源
spark读取hbase的数据时,可以先使用newAPIHadoopRDD得到一个RDD,然后将rdd转换为DF,注册一张表,然后直接就是使用SparkSql用sql语句进行分析。
spark读取hbase的数据时,可以先使用newAPIHadoopRDD得到一个RDD,然后将rdd转换为DF,注册一张表,然后直接就是使用SparkSql用sql语句进行分析。
sparkContext.newAPIHadoopRDD ==》 RDD ==>转换成为rdd里面包含样例类, ==》 转换成为DF ==》 SparkSql使用sql进行数据分析
但此种方式写的比较复杂。SparkSQL支持多种数据源,但目前支持的几种数据源并不满足像此处业务,如HBase、redis等,此时便可以采用自定义数据源的方式读取sparkSql数据源,实现用sql对hbase进行分析。
本文写的Spark版本为2.3
创建hbase数据源表
为了实现我们的sparkSQL自定义数据源获取Hbase当中的数据,我们可以开发测试用例,通过自定义数据源实现获取Hbase当中的数据,然后将查询的数据保存到Hbase里面去
创建 spark_hbase_a表并插入部分数据,作为源数据
bin/hbase shell
create 'spark_hbase_a','f1'
put 'spark_hbase_a','0001','f1:name','caixukun'
put 'spark_hbase_a','0001','f1:score','80'
put 'spark_hbase_a','0002','f1:name','xiaozhan'
put 'spark_hbase_a','0002','f1:score','70'
创建Hbase的数据保存表
执行以下命令创建Hbase表,用于将分析之后的结果数据保存到Hbase当中来
创建spark_hbase_b表,用来存储分析后的数据
bin/hbase shell
create 'spark_hbase_b','f1'
自定义SparkSQL的数据源读取Hbase数据以及将分析结果
自定义sparkSQL数据源的过程中,需要对sparkSQL表的schema和Hbase表的schema进行整合;
整体代码如下:
package com.xyu.programApp
import java.util
import java.util.{ArrayList, List, Optional}
import com.xyu.utils.HbaseTools
import org.apache.hadoop.hbase.TableName
import org.apache.hadoop.hbase.client.{Connection, Put, ResultScanner, Scan, Table}
import org.apache.hadoop.hbase.util.Bytes
import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, Row, SaveMode, SparkSession}
import org.apache.spark.sql.sources.v2.reader.{DataReader, DataReaderFactory, DataSourceReader}
import org.apache.spark.sql.sources.v2.writer.{DataSourceWriter, DataWriter, DataWriterFactory, WriterCommitMessage}
import org.apache.spark.sql.sources.v2.{DataSourceOptions, DataSourceV2, ReadSupport, WriteSupport}
import org.apache.spark.sql.types.StructType
object HBaseSourceAndSink {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[2]").setAppName("HBaseSourceAndSink")
val sparkSession = SparkSession.builder().config(conf).getOrCreate()
//format需要我们自定义数据源
val df: DataFrame = sparkSession.read.format("com.travel.programApp.HBaseSource") //com.travel.programApp.HBaseSource 为一个class类
.option("hbase.table.name", "spark_hbase_a") //我们自带的一些参数
.option("f1.cc", "f1:name,f1:score") //定义有那些列族 定义查询habse的那些列
.option("scheam", "`name` STRING,`score` STRING") //定义我们表的scheam 字段
.load //加载数据
df.createOrReplaceTempView("sparkHbaseSql")
df.printSchema()
val reslutDf: DataFrame = sparkSession.sql("select * from sparkHbaseSql where score > 70 ")
reslutDf.show()
println("读取完成")
reslutDf.write.format(source = "com.travel.programApp.HBaseSource")
.mode(SaveMode.Overwrite)
.option("hbase.table.name", "spark_hbase_b") //保存到那个表
.option("f1", "f1") //定义有那些列族
.save() //保存
println("写完成")
}
}
/**
* 自定义数据源,实现数据的查询
* 需继承DataSourceV2
*/
class HBaseSource extends DataSourceV2 with ReadSupport with WriteSupport {
override def createReader(options: DataSourceOptions): DataSourceReader = {
//获取前面option的参数
val tableName: String = options.get("hbase.table.name").get()
val f1AndCC: String = options.get("f1.cc").get()
val scheam: String = options.get("scheam").get()
new HbaseDataSourceReader(tableName, f1AndCC, scheam)
}
override def createWriter(jobId: String, schema: StructType, mode: SaveMode, options: DataSourceOptions): Optional[DataSourceWriter] = {
val tableName: String = options.get("hbase.table.name").get()
val f1: String = options.get("f1").get()
Optional.of(new HbaseDataSourceWriter(tableName,f1))
}
}
class HbaseDataSourceWriter(tableName:String,f1:String) extends DataSourceWriter {
/**
* 将我们到数据保存起来,全部依靠这个方法
*
* @return
*/
override def createWriterFactory(): DataWriterFactory[Row] = {
new HbaseDataWriterFactory(tableName,f1)
}
//提交数据的时候带的一些注释信息
override def commit(messages: Array[WriterCommitMessage]): Unit = {
}
//数据插入失败的时候带的一些注释信息
override def abort(messages: Array[WriterCommitMessage]): Unit = {
}
}
class HbaseDataWriterFactory(tableName:String,f1:String) extends DataWriterFactory[Row] {
override def createDataWriter(partitionId: Int, attemptNumber: Int): DataWriter[Row] = {
new HbaseDataWriter(tableName,f1)
}
}
class HbaseDataWriter(tableName:String,f1:String) extends DataWriter[Row] {
//获取hbase连接
val conn: Connection = HbaseTools.getHbaseConn
val table = conn.getTable(TableName.valueOf(tableName))
//写如数据
override def write(record: Row): Unit = {
val name: String = record.getString(0)
val score: String = record.getString(1)
val put = new Put("0001".getBytes()) //rowkey
put.addColumn(f1.getBytes(), "name".getBytes(), name.getBytes())
put.addColumn(f1.getBytes(), "score".getBytes(), score.getBytes())
table.put(put)
}
//数据的提交方法,数据插入完成之后,在这个方法里面进行数据的事务的提交
override def commit(): WriterCommitMessage = {
//因为此时暂时没有事务的提交,所以就在此处将table和conn关闭
table.close()
conn.close()
null
}
//如果此写入程序失败,则中止它
override def abort(): Unit = {
}
}
class HbaseDataSourceReader(tableName: String, f1AndCC: String, scheam: String) extends DataSourceReader {
/**
* 定义我们映射表的schema
*
* @return
*/
override def readSchema(): StructType = {
StructType.fromDDL(scheam)
}
override def createDataReaderFactories(): util.List[DataReaderFactory[Row]] = {
import scala.collection.JavaConverters._
//转成java的集合 import scala.collection.JavaConverters._ .asJava
Seq(new HbaseDataReaderFactory(tableName, f1AndCC).asInstanceOf[DataReaderFactory[Row]]).asJava
}
}
class HbaseDataReaderFactory(tableName: String, f1AndCC: String) extends DataReaderFactory[Row] {
override def createDataReader(): DataReader[Row] = {
new HBaseDataReader(tableName, f1AndCC)
}
}
/**
* 自定义HBaseDataReader实现了DataReader接口
*/
class HBaseDataReader(tableName: String, f1AndCC: String) extends DataReader[Row] {
var conn: Connection = null
var table: Table = null
var scan = new Scan()
var resultScanner: ResultScanner = null
/**
* 就在这里获取我们Hbase的数据
*
* @return
*/
def getIterator: Iterator[Seq[AnyRef]] = {
//获取hbase连接
conn = HbaseTools.getHbaseConn
table = conn.getTable(TableName.valueOf(tableName))
resultScanner = table.getScanner(scan)
val strs: Array[String] = f1AndCC.split(",") //f1:name,f1:score
//转成scala的Iterator scala.collection.JavaConverters._ .asScala
import scala.collection.JavaConverters._
//获取到每一条数据
val iterator: Iterator[Seq[AnyRef]] = resultScanner.iterator().asScala.map(eacheResult => {
// val name: String = Bytes.toString(eacheResult.getValue("f1".getBytes(), "name".getBytes()))
// val score: String = Bytes.toString(eacheResult.getValue("f1".getBytes(), "score".getBytes()))
// Seq(name,score)
//todo自己写的
var seq = Seq[String]()
for (str <- strs) {
val str1: String = str.split(":")(0)
val str2: String = str.split(":")(1)
val seq_item: String = Bytes.toString(eacheResult.getValue(str1.getBytes(), str2.getBytes()))
seq = seq :+ seq_item
}
seq
})
iterator
}
val data: Iterator[Seq[AnyRef]] = getIterator
/**
* 这个方法反复不断的被调用,只要我们查询到了数据,就可以使用next方法一直获取下一条数据
*
* @return
*/
override def next(): Boolean = {
data.hasNext
}
/**
* 获取到的数据在这个方法里面一条条的解析,解析之后映射到我们提前定义的表里面去
*
* @return
*/
override def get(): Row = {
val seq: Seq[AnyRef] = data.next()
//从“Seq”值构造一个[[Row]]
Row.fromSeq(seq)
}
/**
* 关闭一些资源的
*/
override def close(): Unit = {
table.close()
conn.close()
}
}
查询hbse的结果

保存前

保存后
3307

被折叠的 条评论
为什么被折叠?



