ORB-SLAM2详解(一)简介

ORB-SLAM2详解(一)简介

本人邮箱:sylvester0510@163.com,欢迎交流讨论,
欢迎转载,转载请注明网址http://blog.csdn.net/u010128736/


一、摘要

  ORB-SLAM是由Raul Mur-Artal,J. M. M. Montiel和Juan D. Tardos于2015年发表在IEEE Transactions on Robotics。项目主页网址为:http://webdiis.unizar.es/~raulmur/orbslam/
  ORB-SLAM是一个基于特征点的实时单目SLAM系统,在大规模的、小规模的、室内室外的环境都可以运行。该系统对剧烈运动也很鲁棒,支持宽基线的闭环检测和重定位,包括全自动初始化。该系统包含了所有SLAM系统共有的模块:跟踪(Tracking)、建图(Mapping)、重定位(Relocalization)、闭环检测(Loop closing)。由于ORB-SLAM系统是基于特征点的SLAM系统,故其能够实时计算出相机的轨线,并生成场景的稀疏三维重建结果。ORB-SLAM2在ORB-SLAM的基础上,还支持标定后的双目相机和RGB-D相机。

二、ORB-SLAM的贡献:

这里写图片描述

三、系统架构

  ORB-SLAM其中的关键点如下图所示:
这里写图片描述
  可以看到ORB-SLAM主要分为三个线程进行,也就是论文中的下图所示的,分别是Tracking、LocalMapping和LoopClosing。ORB-SLAM2的工程非常清晰漂亮,三个线程分别存放在对应的三个文件中,分别是Tracking.cpp、LocalMapping.cpp和LoopClosing.cpp文件中,很容易找到。
image

(1)跟踪(Tracking)
  这一部分主要工作是从图像中提取ORB特征,根据上一帧进行姿态估计,或者进行通过全局重定位初始化位姿,然后跟踪已经重建的局部地图,优化位姿,再根据一些规则确定新的关键帧。

(2)建图(LocalMapping)
  这一部分主要完成局部地图构建。包括对关键帧的插入,验证最近生成的地图点并进行筛选,然后生成新的地图点,使用局部捆集调整(Local BA),最后再对插入的关键帧进行筛选,去除多余的关键帧。

(3)闭环检测(LoopClosing)
  这一部分主要分为两个过程,分别是闭环探测和闭环校正。闭环检测先使用WOB进行探测,然后通过Sim3算法计算相似变换。闭环校正,主要是闭环融合和Essential Graph的图优化。

  • 59
    点赞
  • 434
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
ORB-SLAM2是一种用于实时单目、双目和RGB-D相机的视觉SLAM系统,是由西班牙国家研究委员会(CSIC)领导的研究团队开发的。它使用了ORB( Oriented FAST and Rotated BRIEF,基于FAST角点检测和BRIEF描述子的改进算法)上的特征,并使用Bundle Adjustment优化算法来提高相机姿态的估计精度。ORB-SLAM2源码中文详解pdf,主要是对ORB-SLAM2算法进行详细的解析,方便了解该算法并进行修改定制。以下是本人对具体内容的一些观点: 首先,该pdf分为5部分,分别是ORB-SLAM2算法的总体介绍、系统设计、系统架构与流程、实验结果与分析和源码解读。其中,总体介绍部分介绍了ORB-SLAM2系统的功能和应用场景,并提出了该系统的优势和不足点。系统设计部分详细介绍了系统的设计思路和实现方式,主要包括相机模型、特征提取、特征匹配、姿态估计和位姿优化等方面。系统架构与流程部分则重点介绍了ORB-SLAM2实现过程中的整体架构和流程。 接着,实验结果与分析部分介绍了ORB-SLAM2在Kitti数据集、EuRoC MAV数据集和TUM RGB-D SLAM dataset等公共的数据集上的实验结果,分析了系统的性能和稳定性,并在实验过程中解决了一些系统出现的问题。最后,源码解读部分是对ORB-SLAM2源代码的详细解释,方便参考者了解和修改该算法。该部分包括ORB-SLAM2的主要模块(包括System、Tracker、LoopClosing、Map和Optimizer等模块)的源代码解释和功能说明。同时,该部分还详细介绍了ORB特征提取和尺度恢复、相机运动估计、位姿优化和闭环检测等关键技术的源代码实现和运行原理。 总的来说,ORB-SLAM2源码中文详解pdf系统性地介绍了ORB-SLAM2算法的原理、设计思路和实现流程,方便参考者了解该算法并进行修改优化。同时,该文还详细介绍了ORB-SLAM2的源代码实现和关键技术,对学习和研究计算机视觉和SLAM技术的人士都有很大的参考价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值