排序:
默认
按更新时间
按访问量

美团“猜你喜欢”深度学习排序模型实践

一. 引言推荐作为解决信息过载和挖掘用户潜在需求的技术手段,在美团点评这样业务丰富的生活服务电子商务平台,发挥着重要的作用。在美团App里,首页的“猜你喜欢”、运营区、酒店旅游推荐等重要的业务场景,都是推荐的用武之地。 图1 美团首页“猜你喜欢”场景 目前,深度学习模型凭借其强大的表达能力和灵活的...

2018-03-30 11:14:39

阅读数:217

评论数:0

互联网广告综述之点击率特征工程

互联网广告综述之点击率特征工程 一.互联网广告特征工程 博文《互联网广告综述之点击率系统》论述了互联网广告的点击率系统,可以看到,其中的logistic regression模型是比较简单而且实用的,其训练方法虽然有多种,但目标是一致的,训练结果对效果的影响是比较大,但是训...

2017-12-14 10:05:19

阅读数:77

评论数:0

#####带时间衰减因子#####应用实战: 如何利用Spark集群计算物品相似度

本文是Spark调研笔记的最后一篇,以代码实例说明如何借助Spark平台高效地实现推荐系统CF算法中的物品相似度计算。 在推荐系统中,最经典的推荐算法无疑是协同过滤(Collaborative Filtering, CF),而item-cf又是CF算法中一个实现简单且效果不错的算法。 ...

2017-12-11 11:15:27

阅读数:730

评论数:0

SparkMLlib---基于余弦相似度的用户相似计算

package mllib import org.apache.log4j.{Level, Logger} import org.apache.spark.{SparkContext, SparkConf} import scala.collection.mutable.Map /** * ...

2017-12-11 11:12:17

阅读数:603

评论数:0

基于spark机器学习--物品推荐 物品推荐

基于spark机器学习---------物品推荐 物品推荐 [html] view plain copy import org.apache.spark.SparkContext   import org.apache.spark.mllib...

2017-12-11 10:06:47

阅读数:158

评论数:0

#########什么是用户画像?金融行业大数据用户画像实践#####好文章

文|鲍忠铁(微信号:daxiakanke),TalkingData首席金融行业布道师,上海大数据产业联盟金融行业专家,金融行业大数据实践推动者。鲍忠铁同时也是36大数据的专栏作者。进入 鲍忠铁 先生在36大数据的专栏>>> 进入移动互联网时代之后,金融业务地域限制被打破。金融企...

2017-06-06 15:23:44

阅读数:430

评论数:0

如何实现基于内容和用户画像的个性化推荐

基于内容和用户画像的个性化推荐,有两个实体:内容和用户。需要有一个联系这两者的东西,即为标签。内容转换为标签即为内容特征化,用户则称为用户特征化。 因此,对于此种推荐,主要分为以下几个关键部分: 标签库 内容特征化 用户特征化 隐语义推荐 综合上面讲述的各个部分...

2016-11-29 11:28:22

阅读数:3894

评论数:0

用户画像数据建模方法

从1991年Tim Berners-Lee发明了万维网(World Wide Web)开始,到20年后2011年,互联网真正走向了一个新的里程碑,进入了“大数据时代”。经历了12、13两年热炒之后,人们逐渐冷静下来,更加聚焦于如何利用大数据挖掘潜在的商业价值,如何在企业中实实在在的应用大数据技术。...

2016-11-16 17:12:08

阅读数:445

评论数:0

用户画像感性认识一

什么是用户画像? 简而言之,用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。 举例来说,如果你经常购买一些玩偶玩具,那么电商网站即可根据玩具购买的情况替你打上...

2016-11-16 17:07:18

阅读数:1975

评论数:0

如何实现基于内容和用户画像的个性化推荐

个性化推荐系统是一门由数据挖掘和机器学习综合的学科,它必须能够基于用户之前的口味和喜好提供相关的精确的推荐,而且这种口味和喜欢的收集必须尽量少的需要用户的劳动。本文主要介绍了如何基于内容和用呢画像实现一个个性化推荐化系统。 作者:飒然Hang来源:后端技术杂谈|2016-04-08 11:39...

2016-11-16 17:04:03

阅读数:699

评论数:0

Slope one推荐算法原理

推荐算法Slope one的原理 Slope One的基本概念很简单, 例子1, 用户X, Y和A都对Item1打了分. 同时用户X,Y还对Item2打了分, 用户A对Item2可能会打多少分呢? User Rating to Item 1 Rating to Item 2 X 5 3...

2015-08-28 14:58:13

阅读数:2776

评论数:0

阿里推荐大赛:ODPS SQL 构建离线评估

上一篇文章介绍了 ODPS SQL 的大概使用方法,几个 tips,和讲到一半的离线评估。现在上来把上次的坑填完。希望对于还没有开始离线调优的团队有点帮助。 划分训练集、验证集 回顾训练集、验证集的划分。 根据时间,可以将前三月划分为训练集: create ...

2015-08-04 22:41:39

阅读数:466

评论数:0

阿里推荐大赛:ODPS SQL 入门

第二季才是真正的开始,第一季的汗水、喜悦、纷争都通通过去了。第二季绝对是拼算法、拼模型、拼平台熟练度的比赛,相信坚持下来的话肯定收获颇丰。昨天也迫不及待地进入 「天池」 ,居然是 Windows 系统,一点都提升不了逼格啊。看文档的过程中,又是 ODPS SQL、MapReduce、XLab/XL...

2015-08-04 22:37:45

阅读数:3331

评论数:0

推荐系统之协同过滤实现

推荐系统的评测指标 为了评估推荐算法的好坏需要各方面的评估指标。 准确率 准确率就是最终的推荐列表中有多少是推荐对了的。 召回率 召回率就是推荐对了的占全集的多少。 下图直观地描述了准确率和召回率的含义 覆盖率 覆盖率表示推荐的物品占了物品全集空间的多大比例。 新颖度 新颖度是为了推...

2015-08-04 22:33:28

阅读数:1150

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭